
Operating System Support for Shared Hardware Data Structures

by Gedare Bloom

B.S. in Computer Science and Mathematics, May 2005, Michigan Technological University
M.S. in Computer Science, August 2012, The George Washington University

A Dissertation submitted to

the Faculty of
School of Engineering and Applied Science

of The George Washington University
in partial satisfaction of the requirements

for the degree of Doctor of Philosophy

January 31, 2013

Dissertation directed by

Bhagirath Narahari
Professor of Engineering and Applied Science and of Engineering Management & Systems

Engineering
and

Rahul Simha
Professor of Engineering and Applied Science

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
31 JAN 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Operating System Support for Shared Hardware Data Structures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The George Washington University,Faculty of School of Engineering and
Applied Science,Washington,DC,20052

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A fundamental problem in computing is that processors cannot access memory fast enough to stay fully
utilized. Architecture features like cache, prefetching, out-of-order execution, and multiprocessing only
benefit software with temporal or spatial locality, or instruction-level or task-level parallelism. Software
that relies on fine-grained access to data with structural locality, such as pointer-based data structures,
derives little benefit from these features. The importance of these data structures motivates a new
approach to improve memory performance. A hardware data structure (HWDS) implements a data
structure with operations that leverage parallelism and structural locality to reduce data structure access
times, but only supports an exclusive data structure small enough to fit the capacity of the HWDS. This
thesis proposes operating system (OS) support for HWDSs so that applications can use and share a HWDS
even when its capacity is less than the data structure?s size.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

137

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The School of Engineering and Applied Science of The George Washington University

certifies that Gedare Bloom has passed the Final Examination for the degree of Doctor of

Philosophy as of November 19, 2012. This is the final and approved form of the dissertation.

Operating System Support for Shared Hardware Data Structures

Gedare Bloom

Dissertation Research Committee:

Bhagirath Narahari, Professor of Engineering and Applied Science and of Engineering

Management & Systems Engineering, Dissertation Co-Director

Rahul Simha, Professor of Engineering and Applied Science, Dissertation Co-Director

Gabriel Parmer, Assistant Professor of Computer Science, Committee Member

Evan Drumwright, Assistant Professor of Computer Science, Committee Member

Guru Prasadh Venkataramani, Assistant Professor of Engineering and Applied Science,

Committee Member

ii

c© Copyright 2013 by Gedare Bloom

All Rights Reserved

iii

Dedication

For my grandfather Laird, who inspired me to seek higher education.

For my wife Veronica, who inspires me to better myself.

For my daughter Annalise, who inspires me to better the world.

iv

Acknowledgments

Thank you Veronica, for challenging me to improve in all aspects of life. I love you.

No one is an island. I am grateful for all the assistance I have received throughout my

life. A dissertation is the culmination of a long journey, an epic quest of self-discovery that

starts when the young mind is planted with the seed of introspection. Along the way, many

hands help to sow the seed and till its soil, and to the people whose hands have helped me,

I am grateful.

To my parents, Uno and Jodi, for encouraging academic success, praising hard work

and good grades, permitting my obsessive reading, and for chasing their dreams. To my

siblings, Jeni and Adam for enduring and passing lessons learned, and to Ric and Ben for

following and providing me with retrospective. To my grandparents, Laird and Marcia

Heal, Elsa Bloom, and Beulah Huff, whose memories I treasure, for instilling in me the

virtue of being studious, wholesome, and hard-working: mens sana in corpore sano.

To my aunts and uncles: to Dicky for embodying sisu; to Sandy Martin for introducing

me to science, to Kathy Soderbloom for a larger world of politics and religion, to Diana

Anderson for intellectual challenges and inspirations; to David, Andy, and Loren Heal for

introducing the digital world to me, to Bud Heal for maintaining some of the old world,

and to Kim Rosser, who always seems positive to me.

To all the wonderful teachers and professors who are there for their students.

To Mrs. Weber, my 5th grade science teacher who first introduced me to controlled

scientific experimentation.

To Mr. Wang, my 7th and 8th grade math teacher, for seeing in me a skill for math

v

and encouraging me to develop it beyond the course material, and for the occasional pick-

up basketball game, in which I got to socialize with a teacher outside the confines of the

classroom—a new development.

To Mr. Stelmaszak, my affable but demanding Calculus teacher, for encouraging stu-

dents to think about and prepare for the future.

To Mr. Kedigh, for introducing me to programming and computer science.

To Dr. Dave Poplawski, for sponsorship of the student ACM and programming com-

petitions at Michigan Tech.

To Dr. Steve Seidel, for introducing me to the world of research and academe through

the MTU UPC seminar.

To Dr. Soner Önder, for teaching me enough of compilers and architecture that I have

hardly needed a book or refresher since, a truly amazing skill of a great teacher; I will

always remember that I “cannot bribe God.”

To Dr. Abdou Youssef, for being an inspiration both in the classroom and out.

To Dr. Poorvi Vora, for your passion for students and teaching.

To Dr. Jonathan Stanton, for introducing me to the world of systems and some of the

realities of academic life.

To my advisors, Bhagi and Rahul, for taking me under wing and giving me the freedom

to explore.

To Stefan Popoveniuc, for being a great sounding board and working with me on my

first paper.

To Eugen Leontie, for being in the trenches with me; our successes have been great and

I am glad to have worked with you.

To Joe Zambreno, for useful advice about my career and research. You have helped me

to see the world through a different lens.

vi

To Gabe Parmer, for your excitement and input about my research. Our conversations

about systems has been great for my intellectual growth.

To Guru, you endorsed my work when I was uncertain in the early stages, which helped

me to stay positive and on track.

Friends have a lot to do with how a mind is shaped and grows. Some friends grow and

learn with you, teach you, and inspire you to work hard: Dan Mayo, thank you for being

such a friend—I am better for having known you.

To Rob Weller, Brandon Wilson, and David Deane, for the boring nights and the

exciting, for inviting me out despite my proclivity toward unpredictability and wildness.

To Dan Clark, Justin Ter Avest, and Adam Shirey for 8.31 and all the rest.

To Joe Vaillancourt, for helping to drag me along at times.

To Nick Young and Jeremy Koenen, for broomball, sake, and puyo puyo.

To my friends in grad school who helped lessen some of the burdens of graduate stu-

dent life, thank you Darby Thompson, Rim Yazigi, Darakshan Mir, Kevin Henry, Amin

Teymorian, Liran Ma, Kerry McKay, and Olga Gelbart.

To my lab mates Scotty Smith and James Marshall, for attending more than their share

of presentations on my work, and to James for encouraging me to ride my bicycle more,

and Scotty for putting up with our bicycle talk.

To the great folks who work with RTEMS, especially Joel Sherrill, Chris Johns, and

Sebastian Huber, for the support over the past few years.

To Gary Kreger and Curtis Schoolman, for teaching me that working hard is just

working.

To my department and university, and to industry and government for funding my

research directly and indirectly through grants, fellowships, and awards. My academic

career so far has been supported in part by Hewlett-Packard (through the MTU UPC), the

vii

US National Science Foundation (NSF grants CNS-1117243, CNS-0934725, ITR-025207,

CNS-0831149), the Air Force Office of Scientific Research (AFOSR grants FA9550-09-1-

0194 and FA955006-1-0152), and the George Washington University (teaching fellowships,

travel awards, and summer dissertation fellowship).

To the rest, for surely I missed some, I give thanks.

Surely there must be a less primitive way of making big changes in the [memory]

store than by pushing vast numbers of words back and forth through the von

Neumann bottleneck. Not only is this tube a literal bottleneck for the data

traffic of a problem, but, more importantly, it is an intellectual bottleneck that

has kept us tied to word-at-a-time thinking instead of encouraging us to think

in terms of the larger conceptual units of the task at hand. Thus programming

is basically planning and detailing the enormous traffic of words through the

von Neumann bottleneck, and much of that traffic concerns not significant data

itself but where to find it.

— John Backus, 1977

Advances in microelectronics have made the realization of “smart” data struc-

tures a practical reality.

— Charles Leiserson, 1979

Indeed, I believe that virtually every important aspect of programming arises

somewhere in the context of sorting or searching!

— Don Knuth

viii

Sisu.

ix

Abstract of Dissertation

Operating System Support for Shared Hardware Data Structures

A fundamental problem in computing is that processors cannot access memory fast

enough to stay fully utilized. Architecture features like cache, prefetching, out-of-order

execution, and multiprocessing only benefit software with temporal or spatial locality, or

instruction-level or task-level parallelism. Software that relies on fine-grained access to

data with structural locality, such as pointer-based data structures, derives little benefit

from these features. The importance of these data structures motivates a new approach

to improve memory performance. A hardware data structure (HWDS) implements a data

structure with operations that leverage parallelism and structural locality to reduce data

structure access times, but only supports an exclusive data structure small enough to fit the

capacity of the HWDS. This thesis proposes operating system (OS) support for HWDSs

so that applications can use and share a HWDS even when its capacity is less than the

data structure’s size.

The priority queue and map data structures demonstrate the appeal of an OS–HWDS

union. A GPS benchmark with real-world data executes 24% faster using a HWDS in-

stead of a software data structure, even though the data exceeds the hardware’s capacity.

Compared to software implementations, a 128-node HWDS achieves over 50% faster mean

access time to a 512-node priority queue, and 15% faster mean search time in a 512-node

read-mostly map. When sharing a HWDS among four maps of power-of-2 sizes between

64 and 512, a 128-node HWDS achieves 35% faster searches than a splay tree. These

performance improvements are made possible by the OS support for HWDSs proposed in

this thesis.

x

Table of Contents

Dedication iv

Acknowledgments v

Abstract of Dissertation x

Table of Contents xv

List of Figures xvi

List of Tables xx

List of Acronyms xxi

Glossary of Terms xxii

1 Introduction 1

1.1 Impact . 5

1.2 Overview . 7

1.2.1 Overflow handling . 9

1.2.2 Sharing HWDS resources: HWDS assignment 9

1.3 Contributions . 11

1.4 Scope . 13

1.5 Outline . 14

2 Literature Review 15

2.1 Design and Implementation of HWDSs . 15

xi

2.1.1 HWDSs for network routing . 15

2.1.2 HWDSs for real-time scheduling . 16

2.1.3 HWDSs for reconfigurable computing with Java 16

2.1.4 Systolic Priority Queues . 16

2.1.5 Abstract Datatype Processors . 17

2.1.6 Content-addressable memory (CAM) 17

2.1.7 Scratchpad memory (SPM) . 18

2.1.8 Reconfigurable computing data structures 19

2.1.9 String matching . 19

2.2 Fine-grained Parallelism . 19

2.2.1 Carbon . 20

2.2.2 Ne-XVP . 20

2.2.3 Asynchronous Direct Messages . 21

2.2.4 HAQu . 21

2.2.5 Loop accelerators . 22

2.2.6 Scalable Cores . 23

2.3 Shipping Code to Data . 23

2.3.1 Data structure co-processing . 23

2.3.2 Processor-in-memory . 24

2.3.3 Processor-in-disk . 24

2.4 Linked Prefetching . 25

2.5 Capability- and Object-based Systems . 26

2.6 Transactional Memory . 26

2.7 Summary of Related Work . 27

xii

3 OS Support for HWDSs: Generalities 28

3.1 Overflow Handling . 28

3.2 HWDS Assignment . 29

3.3 Experimental Infrastructure . 31

4 Priority Queue HWDS 32

4.1 Priority Queue: an Example HWDS . 32

4.1.1 Software priority queues . 33

4.1.2 Hardware priority queues . 34

4.2 Handling Overflow with a Priority Queue HWDS 36

4.3 Experiments . 37

4.3.1 Discrete event simulation . 38

4.3.2 Planning algorithms . 44

4.4 Summary . 49

5 Map HWDS 50

5.1 Software-based Search . 50

5.2 Map HWDS . 51

5.2.1 CAM-based map HWDS . 51

5.2.2 Overflow handling . 52

5.2.3 Least recently used (LRU) spilling and fill-after-search 52

5.2.4 Size checks . 52

5.2.5 Dynamic eviction . 53

5.3 Experiments . 53

5.3.1 Overflow handling for large maps . 56

5.3.2 LRU spilling and fill-after-search . 57

xiii

5.3.3 Eviction . 59

5.3.4 Sharing for multiple maps . 60

5.4 Summary . 62

6 Shared HWDSs for Hard Real-Time Systems 63

6.1 Real-time Considerations for HWDSs . 63

6.1.1 Overflow handling . 63

6.1.2 Sharing . 65

6.2 Response Time Analysis . 65

6.2.1 Notation . 65

6.2.2 Standard response time analysis . 66

6.2.3 Response time analysis with HWDSs 66

6.2.4 Response time analysis with a priority queue HWDS 68

6.3 HWDS Assignment for Real-time Systems 69

6.4 Experiments . 72

6.4.1 Schedulability . 74

6.4.2 Real-world Applications . 77

6.5 Summary . 81

7 Future Work and Conclusion 82

7.1 Policies for Accessing Memory . 82

7.2 HWDS Assignment . 82

7.3 Data Sharing . 83

7.4 OS Optimizations for HWDSs . 83

7.5 Integration with Programming Languages and Libraries 84

7.6 Hardware Improvements . 85

xiv

7.6.1 Other HWDSs . 85

7.6.2 Improved processor pipeline support 85

7.6.3 HWDS support for instructions . 85

7.6.4 Prefetching . 86

7.6.5 Multicore considerations . 87

7.7 Conclusion . 87

Bibliography 88

A STL Profiling: Containers and Comparators 108

A.1 Maps in the C++ STL . 108

A.2 Object comparison code . 110

A.3 Summary . 111

xv

List of Figures

1-1 The advantage of hardware is parallelism. 3

1-2 Limited hardware resources create disadvantages for HWDSs. 4

(a) A full HWDS cannot accept new nodes. 4

(b) Data structures cannot share the HWDS. 4

1-3 Program code changes when using a HWDS. 8

(a) Insertion code for a software binary heap. 8

(b) Insertion code for a priority queue HWDS. 8

1-4 HWDS architecture overview. 8

(a) Computer organization. 8

(b) Multicore computer organization. 8

1-5 Handling limited hardware capacity with HWDSs. 10

(a) Spilling to handle overflow. 10

(b) Filling to handle underflow. 10

1-6 HWDS sharing with a HWDS context switch. 10

4-1 A priority queue implemented in hardware. 35

4-2 Overflow data structure implementation matters. 39

(a) Infinite hardware. 39

(b) Binary heap overflow. 39

(c) Linked list overflow. 39

4-3 Overflow with 4,096 operations with 128- and 1024-node HWDSs. 40

(a) 128-node HWDS. 40

(b) 1024-node HWDS. 40

4-4 Priority queue benchmark with 16,384 hold operations. 41

xvi

(a) Exponentially distributed priority increment. 41

(b) Biased priority increment (toward FIFO) 41

(c) Bimodal priority increment . 41

4-5 Four tasks sharing a hardware priority queue with 1024 hold operations. 42

(a) Same size priority queues, exponential distribution. 42

(b) Different size priority queues, exponential distribution. 42

(c) Different size priority queues, priority increment biased toward FIFO. 42

4-6 Multitask sharing of same-sized priority queues with 4096 hold operations and

three sizes of HWDS. 43

4-7 Multitask sharing of same-sized priority queues with 4096 hold operations and

varying priority increment distributions. 44

(a) Biased priority increment. 44

(b) Bimodal priority increment. 44

4-8 Performance of priority queue HWDS on modified DIMACS GPS benchmarks . 47

4-9 Comparison of United HWDS with Split HWDS. 48

5-1 Infinite HWDS and software search results with and without skew. 55

(a) 0% activity ratio, 1000 operations, α = 0.0. 55

(b) 50% activity ratio, 1500 operations, α = 0.0. 55

(c) 80% activity ratio, 1800 operations, α = 0.0. 55

(d) 0% activity ratio, 1000 operations, α = 1.420 55

(e) 50% activity ratio, 1500 operations, α = 1.420. 55

(f) 80% activity ratio, 1800 operations α = 1.420. 55

5-2 Overflow handling of search benchmark with extract-last spilling. 56

(a) 0% activity ratio, 1000 operations, α = 0. 56

(b) 0% activity ratio, 1000 operations, α = 1.420. 56

xvii

5-3 Map overflow with LRU and fill-after-search, 1000 search operations. 57

(a) 0% activity ratio, 1000 operations, α = 0.0. 57

(b) 0% activity ratio, 1000 operations, α = 1.058. 57

(c) 0% activity ratio, 1000 operations, α = 1.420 57

(d) 50% activity ratio, 1500 operations, α = 0.0. 57

(e) 50% activity ratio, 1500 operations, α = 1.058. 57

(f) 50% activity ratio, 1500 operations, α = 1.420. 57

5-4 Map overflow, 1024-node HWDS, 4000 search operations. 58

(a) 0% activity ratio, 4000 operations, α = 0.0. 58

(b) 0% activity ratio, 4000 operations, α = 1.420. 58

(c) 80% activity ratio, 7200 operations, α = 1.420. 58

5-5 Map HWDS overflow handling with HWDS assignment to software upon first

extract. 59

(a) 50% activity ratio, 1500 operations, α = 0.0. 59

(b) 50% activity ratio, 1500 operations, α = 1.058. 59

(c) 50% activity ratio, 1500 operations, α = 1.420. 59

(d) 80% activity ratio, 1800 operations, α = 0.0. 59

(e) 80% activity ratio, 1800 operations, α = 1.058. 59

(f) 80% activity ratio, 1800 operations, α = 1.420 59

5-6 Multitasking search with overflow and different-sized priority queues. 60

(a) 0% activity ratio, 4000 operations, α = 0.0. 60

(b) 0% activity ratio, 4000 operations, α = 1.058. 60

(c) 0% activity ratio, 4000 operations, α = 1.420. 60

(d) 80% activity ratio, 7200 operations, α = 0.0. 60

(e) 80% activity ratio, 7200 operations, α = 1.058 60

xviii

(f) 80% activity ratio, 7200 operations α = 1.420. 60

5-7 Multitasking search benchmarks with size-based assignment and different-sized

priority queues. 61

(a) 0% activity ratio, 4000 operations, α = 0.0. 61

(b) 0% activity ratio, 4000 operations, α = 1.058. 61

(c) 0% activity ratio, 4000 operations, α = 1.420. 61

(d) 80% activity ratio, 7200 operations, α = 0.0. 61

(e) 80% activity ratio, 7200 operations, α = 1.058 61

(f) 80% activity ratio, 7200 operations α = 1.420. 61

6-1 Schedulability of random task sets with HWDSs. 75

6-2 Schedulability of random task sets as utilization changes. 76

(a) Schedulability with U = 0.4. 76

(b) Schedulability with U = 0.8. 76

6-3 Schedulability of random task sets as number of tasks changes. 77

(a) Schedulability with 4 tasks. 77

(b) Schedulability with 16 tasks . 77

6-4 Utilization improvements for GPS and GWDT applications. 80

(a) Utilization improvements for GPS. 80

(b) Utilization improvements for GWDT. 80

A-1 observers map consumes 3.5% of Chromium startup/shutdown time. 111

xix

List of Tables

4-1 Priority queue behavior in selected DIMACS GPS benchmarks 46

6-1 Priority queue behavior in real-world applications. 79

A-1 STL container use of 21 open-source C++ programs. 108

A-2 STL map use profiling . 109

xx

List of Acronyms

API: application programming interface

BST: binary search tree

CAM: content-addressable memory

CSCAA: context switch cost-aware assignment

FIFO: first-in, first-out

HOA: hardware-only assignment

HWDS: hardware data structure

I/O: input/output

ISA: intruction set architecture

LIFO: last-in, first-out

LRU: least recently used

OS: operating system

PAA: priority-aware assignment

RAM: random-access memory

RC: reconfigurable computing

RTEMS: Real-Time Executive for Multiprocessor Systems

RTOS: real-time operating system

xxi

SOA: software-only assignment

SPM: scratchpad memory

STL: Standard Template Library

TLB: translation lookaside buffer

TLP: task-level parallelism (or thread-level parallelism)

TM: transactional memory

VMA: virtual memory address

WCET: worst-case execution time

xxii

Glossary of Terms

container: An abstract data type in the C++ STL.

exception-based HWDS: A HWDS that permits direct access but raises exceptions

when the HWDS cannot satisfy a request. See also: interposition-based HWDS.

heap: A data structure containing key-value pairs that orders nodes within a tree accord-

ing to a rule that a parent node’s key is greater than or equal (equivalently less than

or equal for a max heap) to its children nodes’ keys. See also: priority queue.

HWDS assignment: Problem of determining whether a data structure uses a HWDS or

a software implementation.

HWDS context: HWDS registers and data associated with a data structure. See also:

HWDS context switch

HWDS context switch: Saving one HWDS context and restoring another. See also:

HWDS context.

interposition-based HWDS: A HWDS that is accessed through a software library which

avoids making invalid requests to the HWDS by checking every access. See also:

exception-based HWDS.

locality: The tendency of memory accesses to occur in clusters. See also: spatial locality,

structural locality, temporal locality .

map: A data structure that contains key-value pairs and supports an efficient mechanism

to lookup (search) nodes by key. Also known as: associative array, dictionary, or

search tree.

xxiii

multitasking: OS-mediated processor sharing for multiple execution contexts. See also:

scheduler, task, thread.

node: A storage unit for a data structure comprising one or more data and link (pointer)

fields.

priority queue: A data structure that contains key-value pairs sorted by a priority stored

in the key.

red-black tree: A balanced tree data structure named for the node coloring rules that

ensure a bounded height imbalance. See also: map

scheduler: Entity that controls access to hardware resources. Commonly used for sharing

processor time or access to devices.

simultaneous multithreading: Hardware-supported processor sharing for multiple ex-

ecution contexts simultaneously in parallel. See also: thread, multitasking.

skip list: A list-of-lists data structure that stores all nodes in the last (bottom) list, and

the number of links (height) any given node has is randomized. See also: map

spatial locality: Tendency of memory accesses to be located near each other in the mem-

ory address space. See also: locality.

splay tree: A self-adjusting binary search tree named for the splay operation, which moves

recently accessed nodes to the root for faster access. See also: map.

split HWDS: HWDS that uses an overflow data structure which ignores the mechanisms

of the HWDS. See also: united HWDS.

stable: A property of a priority queue or map data structure that dequeues of nodes of

the same key is in FIFO order.

xxiv

structural locality: Tendency of memory accesses to follow an ordered pattern. See also:

locality.

task: A schedulable software execution context. Also known as: thread or process.

temporal locality: Tendency of recent memory accesses to recur. See also: locality.

thread: execution context. See also: simultaneous multithreading, task.

united HWDS: HWDS that uses an overflow data structure which relies on the HWDS

to improve performance. See also: split HWDS.

Zipf’s distribution: A skewed probability distribution generated with Zipf’s law, which

states the probability the i’th key out of n keys will be accessed is inversely propor-

tional to i.

xxv

Chapter 1 – Introduction

Throughout the history of computing, processors have outperformed main memory [130].

Indeed, the performance gap has steadily increased since the 1980s, leading Wulf and Mc-

Kee [136] to coin the term memory wall to describe the bottleneck caused by the gap. The

memory wall arises from processor performance improving faster than memory bandwidth

and latency.

One technique to delay the impact of the memory wall is caching. But even with

an infinite size cache that (pre)fetches data at full memory bandwidth, the gap between

processor speed and bandwidth means cache misses are inevitable—enough data cannot

move into the cache fast enough to satisfy the processor. When the cache misses, the

memory access time depends on latency to get the first byte, and bandwidth to get the

rest. Patterson [99] states that latency lags bandwidth: a historical trend indicates that

latency improves slower than bandwidth. Yet latency dominates bandwidth in determining

the performance of memory accesses for small sizes, such as a cache line. Poor memory

latency means that cache misses become more expensive relative to processor cycle times

as technology improves. Ten years ago, a 1 GHz processor with DDR-200 RAM had a

memory latency around 52 CPU cycles. Five years ago, a 4 GHz processor with DDR2-800

RAM had a memory latency around 220 CPU cycles.

Meanwhile Moore’s law abides: a prediction that a new chip can be produced with

double the transistors—potential performance—compared with chips made less than two

years prior. As transistor density increases, power and heat dissipation has become a critical

factor in chip design and manufacture. The answer from the architecture community

has been the chip multiprocessor, or multicore: Excess transistors are devoted either to

increased cache or to more processing cores. A fundamental assumption of multicore is

1

that applications can or will exploit sufficient parallelism among multiple cores to achieve

speedup. Unfortunately, parallel programming remains hard, despite years of research that

has yielded promising technologies such as transactional memory [54] and lock-free data

structures [32]. While multicore processors delay the growing gap between latency and

performance by processing at lower frequencies, latency still dominates bandwidth, and

the memory wall remains.

Scaling the memory wall drives research in both computer architecture and compilers.

Computer architects introduced hardware prefetching to reduce miss rates, and techniques

to hide cache misses when sufficient work is available—for example non-blocking cache, out-

of-order execution, and simultaneous multithreading . Compilers play a role in controlling

how software accesses the cache and can reduce miss rates using techniques such as software

prefetching, instruction reordering, memory compaction, and loop optimizations. Most

compiler solutions work well on statically known or easily profiled applications such as

software with bounded loops and fixed-size arrays. But many high-level programs are

written in terms of data structure (or object) operations and interfaces, and not in terms

of loops and arrays.

This thesis improves the state-of-the-art by supporting the use of excess transistors

to improve application performance through a fundamental programming construct that

spans both processor and memory: the data structure. A hardware data structure (HWDS)

is an implementation of a data structure that is supported by hardware mechanisms to im-

prove data structure operations. By organizing the memory hierarchy in terms of data

structure operations, instead of cache line fetches, HWDSs permit rethinking how proces-

sors access memory. More important, hardware mechanisms exploit parallelism to reduce

the algorithmic complexity of data structure operations, which can yield substantial perfor-

mance benefits compared with software implementations; see Figure 1-1, which shows how

2

Figure 1-1: The advantage of hardware is parallelism. Here, an insert in a software binary
search tree requires traversing at most the entire depth of the tree, whereas hardware can
insert in two steps by broadcasting and comparing the new value in parallel.

hardware can insert to a sorted structure faster than software because of the advantage of

parallel comparisons.

HWDSs are not without disadvantages however, most of which stem from limited hard-

ware resources. Chip space allocated to the HWDS steals from other features such as cache

and on-chip communications, so minimizing the HWDS size is important. The main dis-

advantage of HWDSs is the limited hardware capacity that can be devoted to supporting

data structure operations; see Figure 1-2a. Limited hardware capacity precludes using one

HWDS for each software data structure, so sharing the HWDS resources in multitasking

environments is important; see Figure 1-2b, which depicts two data structures attempting

to use a HWDS simultaneously. The HWDS context is the set of control registers and data

belonging to the data structure that is loaded in a HWDS.

Hardware support for specific data structures has been proposed in the past (see Chap-

ter 2), but so far the interface between the HWDS and programmer has been ignored.

Most existing HWDSs have limited interactions with operating system (OS) and applica-

tion software, with much of the prior work allowing only one data structure with a known

3

(a) A full HWDS cannot accept new nodes. (b) Data structures cannot share the HWDS.

Figure 1-2: Limited hardware resources create disadvantages for HWDSs.

maximum size (less than HWDS capacity) to use the HWDS; a notable exception is the

work of Chandra and Sinnen [27], which is reviewed in Section 2.1 and compared with the

approach of this thesis in Section 4.3.2. Sharing a HWDS among arbitrarily-sized data

structures requires extra support in both hardware and software.

This thesis shows that OS, application, and HWDS interactions are crucial to realizing

efficient HWDSs that arbitrarily-sized data structures can share. Architecture features

enable OS and application use of HWDSs. OS support extends the capabilities of HWDSs

beyond prior art with support for arbitrary-sized structures and sharing a HWDS among

tasks. (Throughout this dissertation, task denotes a software context and thread denotes

a hardware context.) HWDSs can also improve the performance of OS data structure

operations, and contribute knowledge about task behavior with respect to data structure

usage.

Yesterday’s data structures were written together with application code. Today’s data

structures come in optimized, portable, mature libraries. Tomorrow’s data structures

should ship with the hardware support to use them well. This thesis shows the promise of

HWDSs as a new interface between software and memory.

4

1.1 Impact

Niklaus Wirth wrote that “Algorithms + Data Structures = Programs,” a maxim that has

gained strength as software has become more complex and data structures more impor-

tant. Modern programmers can choose data structures from optimized libraries such as

the Standard Template Library (STL) or Boost in C++, and the Java collections frame-

work. These libraries stress both performance and flexibility, but their performance is

often limited to an O(log n) algorithmic factor—and the dynamic nature of these struc-

tures lessens the benefits of prefetching and caching. This thesis shows that HWDSs can

improve performance by reducing that algorithmic factor to O(1) for common operations

in ideal cases, and when the ideal is not met then extra support from the OS helps to

maintain performance improvements.

The following examples demonstrate the potential for improvement from data structures

implementing the two abstract data types considered in this thesis, the priority queue and

map:

• Planning algorithms. Two popular algorithms that use priority queues are Dijkstra’s

shortest-path algorithm and the A* planning algorithm. Experiments show that Di-

jkstra’s algorithm often spends 50–60% of its execution time in the priority queue [81].

Our own experiments on real-world maps taken from the DIMACS shortest path im-

plementation challenge benchmarks [26] show the benchmark spends up to 29% of

its time inside the priority queue.

• Image analysis. The grey-weighted distance transform on 3D images uses a software

priority queue [82]. Measurements show the priority queue accounts for over 30% of

the application’s execution time; see Section 6.4.

5

• Discrete event simulation. A priority queue organizes pending events in a discrete-

event simulation (such as a queueing network or integrated circuit simulation), and

has been a popular test case for priority queue implementations [61, 105]. Such

simulations spend up to 40% of execution time managing the queue [105].

• Fine-grained multitasking. Carbon [73] uses hardware queues to improve fine-grained

multitasking for Recognition, Mining, and Synthesis. Compared to software ap-

proaches, Carbon can achieve 68% faster execution time for loop-level parallelism,

and 109% for task-level parallelism.

• Real-time task scheduling. In prior work, I have shown that a hardware priority

queue reduces scheduling overheads and improves predictability [16]; others have

shown that a hardware priority queue can reduce task scheduler overhead from 18%

in software to less than 0.5% [72].

• Web browsers. The Chromium web browser makes extensive use of the C++ STL

map container, which often is implemented as a red-black tree. Profiling (see Ap-

pendix A) of this code shows that—even for a short session of starting, loading a

blank page, and stopping—Chromium creates 1907 maps and executes 49,483 find

operations that consume 436,758,391 cycles of map execution time, or approximately

12% of overall execution time.

• Programming languages. Interpreted languages need to look up strings frequently, as

do systems that monitor memory accesses. For example, Akritidis et al. [7] use a splay

tree—a self-adjusting binary search tree (BST)—referent object checker and evalu-

ated it on the Olden and SPECINT 2000 benchmarks—for Olden the time overhead

of using the checker was 30% on average (excluding two benchmarks); for SPECINT

2000 the overhead was on average 900% and exceeded 100% for all benchmarks.

6

• OS search trees. Pfaff [100] evaluates implementations of BSTs—including random

BSTs, self-balancing BSTs (AVL and red-black), and splay trees—in the context of

systems usage. The systems applications used to evaluate the BSTs are virtual mem-

ory address (VMA) mapping in Linux, IP peer caching, and index cross-reference

collation. With real-world data, a splay tree implementation of VMA mapping im-

proves performance of Mozilla, VMware, and Squid test sets by 23% to 40%. Other

uses of balanced search trees in Linux include: input/output (I/O) schedulers, optical

device driver, high-resolution timers, ext3 filesystem directory entries, and crypto-

graphic keys [1].

• Key-value stores Key-value stores implement straightforward searching with keys

that are often either strings or integers. Search benchmarks model the applica-

tion processing of key-value stores; OS processing time of key-value stores can be

substantial—when requests are small memcached spends up to 80% of its time in OS

code primarily for network packet processing [20].

These applications are just a sample of the uses for priority queues and maps. OS support

for HWDS use in these applications can eliminate much of the time spent processing data

structure operations.

1.2 Overview

In using a data structure, an application “reads” (searches or iterates) and “writes” (in-

serts or removes) nodes. A data structure’s read/write operations abstract the lower level

load/store operations that comprise a processor’s interface to memory. By supporting the

high-level abstraction of data structure operations, HWDSs enable applications to extract

fine-grained parallelism from their data structures.

7

(a) Insertion code for a software binary heap. (b) Insertion code for a priority queue HWDS.

Figure 1-3: Program code changes when using a HWDS.

Figures 1-3a and 1-3b demonstrate the expressive power of a HWDS abstraction with

the insert code of a software priority queue implemented as a binary heap, and the insert

code of a priority queue using a HWDS respectively.

Figure 1-4a shows how a HWDS can fit with other computer hardware in a uniprocessor

setting; multicore chips introduce complications for sharing and communication, and one

possible configuration is shown in Figure 1-4b. Design space exploration for both uni- and

multi-processing with HWDSs is interesting future work.

(a) Computer organization. (b) Multicore computer organization.

Figure 1-4: HWDS architecture overview.

8

This thesis makes it possible to use a HWDS even when the application’s data needs

exceed the HWDS capacity, or when multiple data structures attempt to share the HWDS

concurrently. I demonstrate the benefit of OS support for HWDSs with use cases and

synthetic benchmarks that are executed using cycle-accurate simulation.

1.2.1 Overflow handling

Generic applications require support for data structures of arbitrary size. Since hardware

has a fixed capacity, arbitrarily large data sets eventually will cause overflow. A HWDS

is like a write-back cache: it must save dirty nodes to backing storage or else the updated

data would be lost. This is in opposition to a write-through or read-only cache, which can

handle overflow by simply removing nodes from the hardware unit’s storage because the

backing storage already contains the up-to-date node’s data.

The specifics of overflow handling depends on the implementation of the HWDS, but

the general concept is universal. To deal with overflow, HWDS control logic and software

(for example, the OS) spill data out of the HWDS and into an overflow data structure in

secondary storage (main memory); see Figure 1-5a. Conversely, control logic and software

fill data from the overflow data structure when the HWDS needs to access nodes that

it previously spilled; see Figure 1-5b. Section 3.1 describes HWDS overflow handling in

greater detail.

1.2.2 Sharing HWDS resources: HWDS assignment

Multiple data structures might share a HWDS, for example when two applications execute

concurrently and use the hardware for different data structures. Sharing is a traditional OS

problem of how to manage contention for a limited hardware resource: The usual solution

is scheduling. This thesis turns the sharing problem into that of HWDS assignment , which

9

(a) Spilling to handle overflow. (b) Filling to handle underflow.

Figure 1-5: Handling limited hardware capacity with HWDSs.

Figure 1-6: HWDS sharing with a HWDS context switch.

is the problem of determining whether a data structure uses a HWDS or a software-only

implementation. When two data structures do share a HWDS, the OS supports the HWDS

with a HWDS context switch—spilling the nodes for the current HWDS context and filling

nodes for the requested data structure; see Figure 1-6. Section 3.2 further illuminates the

problem of sharing HWDS resources and its solution, HWDS assignment.

10

1.3 Contributions

This thesis explores the hardware-software interface of HWDSs with a holistic approach

that has many contributions including:

• Operation-level interface for applications to use HWDSs. An interface be-

tween HWDSs and software gives applications access to HWDS resources and im-

proves program performance. The programming interface is at the level of data

structure operations, and the implementation is at the instruction set architecture

(ISA) level so that future improvements in the hardware microarchitecture do not

affect the interface.

• Effective use of parallelism compared to conventional architectures. Explic-

itly parallel architectures require a programmer to partition and synchronize shared

data accesses. HWDSs use implicit parallelism to achieve high-performance parallel

computing without burdening the programmer with consistency and tasking models.

Implicit parallelism improves software performance at little cost to the programmer.

• Spilling HWDS overflow data. Hardware and software work together to support

large data structures that overflow hardware capacity. Although some performance

is lost, the HWDS approach remains competitive with software-only solutions. Com-

pared to software implementations, a 128-node HWDS achieves over 50% faster mean

access time to a 512-node priority queue, and 15% faster mean search time in a 512-

node read-mostly map.

• HWDS Assignment for sharing a HWDS. HWDS assignment is supported

by the OS to share and restrict available HWDS resources among multiple data

structures. When sharing a HWDS among four maps of power-of-2 sizes between 64

and 512, a 128-node HWDS achieves 35% faster searches than a splay tree. Eviction

11

of oversized HWDSs enables the OS to make dynamic assignment decisions to limit

performance loss; when a 128-node HWDS is used for a 512-node map that is updated

and searched, an eviction policy yields 16% performance loss, but performance loss

without eviction is 64%. Prior art does not offer any solutions for HWDS assignment,

so these performance improvements are made possible solely by the OS support for

HWDSs proposed in this thesis.

• Support for many kinds of data structures. The priority queue and map are

examples of HWDSs that improve the performance of sorting and searching, two

fundamental problems in computing. The policies and solutions of this thesis apply

to both kinds of data structures, and future work can investigate others such as

string-based or hashing structures.

• Increased real-time schedulability. HWDSs can benefit real-time systems by

reducing worst-case execution times (WCETs) even when multiple data structures

share a HWDS or when data structure sizes exceed HWDS capacity.

• Evaluation with cycle-accurate timing, real systems, and real-world data.

Real applications and synthetic benchmarks validate the HWDS approach using

cycle-accurate fully-functional simulation. OS support is designed and implemented

in the Real-Time Executive for Multiprocessor Systems (RTEMS) real-time oper-

ating system (RTOS), so real OS overheads are included in the experiments. The

simulator executes HWDS operations and accounts for operation latency as part of

the cycle time. Experiments are conducted using applications and microbenchmarks

that use data structures with both software and HWDS implementations.

With respect to prior art, an experiment using a GPS benchmark with real-world data

is conducted that compares overflow handling with the exception-based united HWDS

12

proposed by this thesis with the interposition-based split HWDS proposed by others [27];

see section 4.3.2. When using the united HWDS, the benchmark executes 24% faster

than when using a software implementation, even though the data structure size exceeds

the hardware’s capacity. The benchmark using the split HWDS never does better than

software in the presence of overflow.

The OS support for HWDSs presented in this thesis bears some resemblance to poli-

cies and mechanisms for cache and translation lookaside buffer (TLB) management, but

the structural locality , operation diversity, and design and implementation multiplicity of

HWDSs demand new solutions. Memory cache is a reflection of a flat array of storage, and

leverages the independence between cache lines for fast, effective fetching and replacing. A

HWDS has connections between nodes that must be preserved, which would require com-

plex hardware to implement structure-preserving overflow. HWDSs support common data

structure operations that encode high-level abstractions in low-level mechanisms, whereas

cache and TLB are limited to the load/store memory interface. Extant solutions to hard-

ware overflow and sharing that rely on hardware mediation are not useful across multiple

kinds of HWDSs, and hardware management for any given HWDS implementation would

drive up its cost and complexity in terms of both development and hardware resources.

The structural locality, operational richness, and design diversity motivate software man-

agement of HWDSs. This thesis shows that software—more flexible, fixable, and forward-

compatible than hardware—can manage HWDSs efficiently to provide performance gains

for applications and systems software.

1.4 Scope

Investigation of HWDSs is an open-ended area of research. Limits on the scope of this

thesis delineate what is and is not investigated.

13

This thesis investigates: architectural support for HWDSs with Simics/GEMS, OS

support with RTEMS in a uniprocessor setting, representative data structures (priority

queue and map) and applications, HWDSs in real-time systems, and the performance of

HWDSs versus software-only solutions.

This thesis does not investigate: real hardware or general purpose OS (e.g. Linux) im-

plementations, design space exploration for HWDS interfaces or implementations, compiler

support for HWDS, sharing a HWDS among multiple tasks with a single data structure,

OS optimizations that use the knowledge about applications gleaned from HWDS behav-

ior, multiprocessor architectures, and metrics related to power, reliability, or usability. All

of these areas are possible directions for future work.

1.5 Outline

This thesis is organized as follows. Chapter 2 reviews the related work in the field. Chap-

ter 3 describes the generic OS support for HWDSs necessary for overflow handling and

HWDS assignment. Chapter 4 describes an example of a HWDS that implements a pri-

ority queue, refines the generic overflow handling support, and presents experimental re-

sults that demonstrate the performance of overflow handling and HWDS assignment for

two important priority queue applications: discrete event simulation and path planning.

Chapter 5 proposes a HWDS implementation of a map for efficient searching, and presents

experimental results from a synthetic search benchmark. Chapter 6 shows how real-time

systems can use HWDSs to improve the schedulability of task sets by reducing WCETs;

I evaluate four HWDS assignment algorithms using experiments and benchmarks mod-

eled from real-world applications. Chapter 7 identifies possibilities for future work and

concludes.

14

Chapter 2 – Literature Review

The work most closely related to this thesis are in the areas of design of HWDSs, hardware

support for fine-grained parallelism, shipping code to data, linked prefetching, object-based

systems, and transactional memory. The following reviews each of these in turn.

2.1 Design and Implementation of HWDSs

2.1.1 HWDSs for network routing

Hardware support for scheduling has been an area of interest in the queuing hardware of

packet-switched networks. Moon et al. [87] compare four approaches to hardware priority

queues for high-speed networks and introduce an approach that melds two of the previ-

ous solutions. Kim and Shin [65] describe an architecture for EDF scheduling for ATM

switch networks and introduce deadline folding to circumvent limitations in the range of

priority values. Bhagwan and Lin [14] introduce a heap-based hardware priority queue

with pipelined stages of the enqueue and dequeue operations. Morton et al. [89] describe

a hardware priority queue that does not require hardware comparators.

How this thesis differs Although packet-switched routers can benefit from hardware

priority queues, software has no interface to access the priority queues—they are only

useful for sorting network packets. This study enables software to use the priority queues

by exposing an interface to the hardware so that software can benefit from the hardware

acceleration while remaining flexible to implement different algorithms using functional

memory.

15

2.1.2 HWDSs for real-time scheduling

Approaches for hardware-based packet scheduling have been extended for task scheduling in

RTOSs. The goals of hardware support for real-time scheduling are to minimize scheduling

latency and provide highly predictable multiprocessing. The Spring Scheduling Coproces-

sor (SSCoP) [24] is one of the first examples of a hardware task scheduler and introduces

simple queues for the set of scheduled tasks. Others have implemented hardware scheduling

using some form of custom logic and a hardware priority queue [108, 71, 69, 16, 72, 115].

How this thesis differs In contrast to the prior work, which focuses on hardware sup-

port for a single fixed-size priority queue, this thesis allows arbitrarily-large priority queues

to share a hardware priority queue.

2.1.3 HWDSs for reconfigurable computing with Java

Chandra and Sinnen [27] investigate HWDSs in the context of integrating a high-level

language, Java, with reconfigurable computing. In addition to the usual priority queue op-

erations, the authors investigate how to increase the queue length, use non-integer priority

values, and add new operations.

How this thesis differs Chandra and Sinnen do not consider how HWDSs are shared

and scheduled among multiple consumers. Their approach, a split interposition-based

HWDS , does not handle overflow well; see Section 4.3.2.

2.1.4 Systolic Priority Queues

Leiserson [77] describes systolic HWDS implementations including priority queue, multi-

queue, and tree. He suggests that overflow be handled by the OS, and that pairing an

insert with an extract can handle refilling the HWDS.

16

How this thesis differs Leiserson focuses on the hardware design of systolic HWDSs

with only cursory examination given to the software-side of the HWDS-OS equation. This

thesis demonstrates that intelligent software support is necessary to achieve good perfor-

mance from HWDSs in the presence of overflow and sharing.

2.1.5 Abstract Datatype Processors

Kim [67] and Wu et al. [134] share the vision of raising the abstraction of hardware to

that of software; their work proposes and evaluates abstract datatype processors, which

accelerate data types with mechanisms and performance similar to HWDSs. Abstract

datatype instructions can reduce instruction fetch times by 21–48% and data read/write

times by 22–40%. The datatypes they investigated are the sparse vector and hash table,

and hardware support is modeled with a content-addressable memory (CAM).

How this thesis differs Abstract datatype instructions currently ignore capacity and

sharing problems, but the similarity between these instructions and HWDSs indicates

similar problems exist due to hardware size limitations.

2.1.6 Content-addressable memory (CAM)

Hardware can search small sets of records with numerical keys efficiently with a CAM.

Ternary CAMs [97] can implement approximate search for some applications, such as

longest prefix matching.

A common use for CAM in modern computing is as a read-only cache for page tables—

the virtual-to-physical address translation map that underlies page-based virtual memory

systems. This cache is called the TLB, and its purpose is to cache translations for fast

lookup. Tagged TLBs permit cached entries from multiple page tables to share the TLB.

TLB overflow is handled by dropping entries; since the TLB is a read-only cache, the

17

backing data remains in memory. However if the page table is modified, the TLB needs to

be refreshed or invalidated.

How this thesis differs CAMs do not permit searching with arbitrary-sized or multiple

data sets because of limited hardware capacity, but the solutions posed in this thesis may

be used with CAMs to implement a map HWDS.

The primary difference between the page table-TLB and the HWDSs employed in this

thesis is that the TLB acts as a read-only cache for the page table, whereas this thesis

uses HWDSs like a write-through cache for the overflow data structure. Although subtle,

this difference is important. Other differences include: a TLB does not export a search

function; a task or process only gets to use one page table at a time; TLBs do not in

general support arbitrary search keys—the address translation relies on the size of pages

in the page table to divide the search space.

2.1.7 Scratchpad memory (SPM)

An alternative to caching in the embedded domain is a scratchpad memory (SPM) [101].

SPMs can provide predictable access times and software control over code [133] and

data [125]. SPMs are software-managed: applications and compilers control the data (and

code) residing in the SPM. Co-mingling SPMs with custom hardware can provide further

benefits such as intelligent object-based allocation [129, 128].

How this thesis differs Software that uses a SPM still executes serially to access data

structures. HWDSs execute in parallel and require different management than scratch-

pads because of the increased hardware complexity in HWDS logic. Combining the two

approaches to use a HWDS with a SPM as the backing store may be useful for overflow

handling.

18

2.1.8 Reconfigurable computing data structures

A seminal paper in reconfigurable computing (RC) design by Dehon et al. [40] proposes

classes of design pattern for RC. One of these design pattern classes is the Value-Added

Memory Patterns which includes CAMs, priority queues, and other data structures. Some

of the other data structures implemented in RC logic include graphs [85, 41] and trees [117].

These data structure implementations can be reused most easily in a HWDS framework

that executes as a co-processor.

How this thesis differs Existing RC data structures do not support general applications

because sharing and overflow are not addressed.

2.1.9 String matching

Modern applications increasingly rely on text processing—for example parsing web docu-

ments, string search, and regular expression matching—that benefits from hardware sup-

port for string matching [25]; so do network appliances for deep packet inspection in intru-

sion detection [30, 118, 63, 139, 60].

How this thesis differs String and regular expression matching architectures implement

HWDSs for specialized string-based applications. Future work can make use of these

HWDSs and improve their generality across application domains by employing the results

of this thesis.

2.2 Fine-grained Parallelism

If a programmer decomposes a program into small independent tasks then the program has

more potential parallelism and, by Amdahl’s law [10], greater speedup. Thus, multicore

19

platforms should support fine-grained task-level parallelism (or thread-level parallelism)

(TLP) for greater speedup. The challenge for fine-grained TLP is to maintain overheads

proportional to task sizes and to avoid solutions that degrade performance, for example by

destroying locality. Improving TLP performance for current and next generation processors

shares common ground with HWDSs, both in motivation and solution methods.

2.2.1 Carbon

Kumar et al. introduce Carbon [73], hardware acceleration for multicore task scheduling

with task last-in, first-outs (LIFOs), prefetchers, and work stealing in hardware to support

fine-grained TLP. Carbon exposes a task queue application programming interface (API)

in the form of intruction set architecture (ISA) extensions, so it is similar to the HWDS

paradigm.

How this thesis differs In Carbon, the queues are used specifically for task schedul-

ing, which means that applications only benefit if Carbon extracts sufficient fine-grained

TLP. Carbon provides no benefit to serial workloads and requires small task sizes to see

improvement over software scheduling. A HWDS configured as a LIFO would be similar

to the single core configuration of Carbon.

2.2.2 Ne-XVP

A research project at NXP Semiconductors (formerly Phillips Semiconductors), the Ne-

XVP architecture aims to provide an efficient multimedia processor platform. Three specific

aspects of the Ne-XVP are relevant to this study: the Task Scheduling Unit) [56], Task

Management Unit) [113], and Hardware Task Scheduler [8]. Unlike with Carbon and

HWDS, the hardware queues in Ne-XVP are not exposed at an API or ISA level.

20

How this thesis differs As in Carbon, the scheduling policy is inflexible and programs

that lack TLP cannot improve from the extra hardware support. Our project allows pro-

grams to improve serial performance bottlenecks by taking advantage of parallelism in data

structures.

2.2.3 Asynchronous Direct Messages

Sanchez et al. [109] introduce asynchronous direct messages (ADM) to provide message

passing akin to interprocessor interrupts but avoiding the cache hierarchy. The authors

implement work-stealing scheduling algorithms for multicore platforms in the context of

fine-grained parallel workloads using ADM. Task queues are maintained in software, so

that ADM is the only hardware component of the task scheduler. New privileged software

handles the receive buffer overflow and underflow conditions. Privileged software also is

responsible for mapping each scheduled task to a specific core for translating destination

task IDs when routing messages.

How this thesis differs Asynchronous direct messages attack the communication bot-

tlenecks between tasks in a multicore platform, whereas this thesis focuses on the bottleneck

of serial memory accesses during data structure operations.

2.2.4 HAQu

Lee et al. [76] propose a hardware accelerated queue (HAQu, pronounced “haiku”) that

accelerates software queues for multicore platforms. Unlike the work reviewed so far, HAQu

does not use a hardware queue; instead HAQu implements queuing through an application’s

address space. Hardware buffers queue operations through a unit that complements each

core’s pipeline.

21

How this thesis differs Implementing fast data structures through an application’s

address space is an interesting idea, but the restrictions on use (single producer-consumer

pairs, memory fences) may be trouble for complex data structures. Because HAQu does not

leverage hardware parallelism, it cannot achieve the speedup possible with a true HWDS.

Future work may consider how HWDS can provide isolation of producers and consumers

while maintaining memory consistency in hardware and virtualization using the address

space write-through proposed by HAQu.

2.2.5 Loop accelerators

An approach for exploiting certain kinds of loop-level parallelism is a loop accelerator.

Loop accelerators typically sit on the system bus and directly access memory. Often they

are customized for a particular loop or a limited range of loop bodies. Loop accelerators

excel over general purpose processors by exploiting loops with simple control flow, cyclically

repeated instruction streams, decoupled memory accesses and computations, and domain-

aware customizations of the processing units (functional units, interconnect, register files)

[33]. The same reasons that loop accelerators are advantageous to use prevent them from

being useful for complex or linked data structures. Branches within iteration cannot be

speculated easily within a loop accelerator, so structures having branch points such as trees

will not be supported.

How this thesis differs Linked structures are hard to accelerate in a loop accelerator

because the address generation hardware is unable to use simple computations to fetch

the required memory for a loop body. Random access also implies data-dependent ad-

dress calculations, so certain array-like structures are not suitable for loop accelerators.

These restrictions prevent comparison of loop accelerators with HWDSs because the two

approaches target distinct workloads. Future work can consider approaches that combine

22

loop acceleration with HWDS support for linked data structures.

2.2.6 Scalable Cores

Hill and Marty [55] argue that architecture research should pursue methods that provide

the ability to combine cores dynamically to boost the performance of sequential code—

Gibson calls such processors scalable cores [51]. CoreFusion [58], TRIPS [110], Composable

Lightweight Processors [66], WiDGET [127], and ForwardFlow [52] are scalable core archi-

tectures. Scalable cores adapt dynamically to the needs of software so that TLP is exploited

when sufficient parallelism exists, while sequential workloads benefit from aggregations of

execution units.

How this thesis differs Scalable cores take an execution-oriented view toward perfor-

mance and choose between offering ILP or TLP. Like scalable cores, this thesis improves

the performance of (data structure) code that is hard to parallelize at a task granularity;

the difference is that a data-oriented view provides speedup to workloads that may not

benefit from either ILP or TLP because the primary bottleneck is memory.

2.3 Shipping Code to Data

2.3.1 Data structure co-processing

Loew et al. [81] introduce data structure co-processing as a hardware-software approach

for accelerating data structure operations. This approach is a model of computation that

offloads data structure operations to a separate hardware thread or core. The main draw-

back of the model is that the offloading suffers poor performance due to synchronization

and communication between application and data structure threads.

23

How this thesis differs This thesis couples HWDSs with OS support for applications.

HWDS could improve data structure co-processing through core specialization.

2.3.2 Processor-in-memory

Shrinking memory bandwidth with respect to processsor speed motivates intelligent mem-

ory (processor-in-memory), for example the IRAM project [98] and Active Pages [95]. An

intelligent memory architecture embeds some processing units close to memory, that is, on

the same chip as the memory modules. The processing units enable computations that

can use memory at a higher bandwidth than a traditional CPU over a memory bus. Other

processor-in-memory projects include [98, 44, 59, 47, 70, 21, 31, 119, 46, 140]. OS support

such as that of ActiveOS [94] for Active Page enables intelligent memory for multiprocess

environments.

How this thesis differs HWDSs differ from intelligent memory by taking advantage

of parallelism within structured data; the two approaches could be used together with

a HWDS implementing an intelligent memory processing unit. This study in particular

focuses on the OS policies and support needed to make HWDSs work with general-purpose

applications.

2.3.3 Processor-in-disk

Disk I/O suffers similar latency problems as memory, and improvements in disk I/O per-

formance would benefit applications such as databases, web transaction processing, data

mining, and multimedia. Early work in database processors [114, 96, 79, 111] reduce the

costs of relational database operations by tailoring circuits to access data independently

from main processors. Database processors were abandoned due to inflexibility and prob-

lems with backward compatibility [19], but active disks and related approaches [6, 104, 64]

24

generalize database processors to improve general-purpose disk I/O by shifting general-

purpose processors into disk controller interfaces. The notion of shifting processing code to

disks leads to semantically-smart disks that integrate disk I/O with knowledgeable filesys-

tems and applications [112].

How this thesis differs As with the processor-in-memory work, this thesis focuses on

the OS policies and support for sharing and handling overflow. Furthermore, the impli-

cation of intelligent disks is that either applications provide disk processing code, or disk

devices are application-aware. With HWDSs, the abstraction of a data structure precludes

such tight integration between hardware and software.

2.4 Linked Prefetching

Prefetching is a known commodity in modern computer architecture. But just as well-

known is that prefetching works well in structures that exhibit high spatial locality : iter-

ating through dense arrays being the best case. For non-local accesses, such as those seen

in linked data structures, traditional prefetchers can actually degrade performance due to

unnecessary fetches. Prefetching of linked data structures is a challenging research area

with interesting solutions, including correlation-based prefetching [62], pointer prefetch-

ing [107, 126, 23], content-directed prefetching [36, 45], and push prefetching [137, 138].

A novel solution also combines linked prefetching with intelligent memory in which a pro-

grammable unit traverses data structures in memory and feeds the processor with prefetch

data [57].

How this thesis differs Unlike linked prefetchers, the HWDS implicitly knows the struc-

ture of data so there is no need for logic to look-ahead and fetch from memory. Linked

25

prefetchers offer one side of a coin—reduce average memory access times for linked data

structures—with a HWDS on the other side of the coin: reduce data structure processing

times through fine-grained parallelism. Combining the two approaches would be inter-

esting; perhaps a linked prefetcher could implement the overflow/underflow handler of a

HWDS independently of software.

2.5 Capability- and Object-based Systems

From the mid 70s through the late 80s, computer architects sought to support capabil-

ities [42, 78] and object representations directly in hardware [135, 34, 12, 90, 38]. An

infamous commercial system is the Intel iAPX 432, which featured capabilities, object

addressing, garbage collection, interprocess communication, multitasking, and multipro-

cessing [93, 37, 78]; the iAPX 432 design failed due to performance problems [35].

How this thesis differs Every language can implement an object representation, so

direct hardware support for objects is inflexible and non-portable, and OS modifications

are intrusive—especially for hardware capabilities—and complex. HWDSs implement an

abstraction that permits simple hardware and modular OS support. Future work can

extend this thesis to show how to support objects in a manner consistent with HWDSs.

2.6 Transactional Memory

Multicore places extra pressure on memory: programs share data and execute in parallel

contending for shared memory. Traditional solutions for contention—namely locking—

may not scale well to multicore systems. An alternative solution is transactional memory

(TM) [54]—in the spirit of database transactions—that provides an all-or-none atomicity

for memory accesses.

26

Hardware support for TM alleviates performance concerns, and both hardware-only

and hybrid hardware/software TM systems have been proposed and produced [88, 84, 18,

43, 39]. Some of the challenges with TM systems is integration with the OS, for example

how to use transactions in the presence of system calls and I/O [106, 124].

How this thesis differs HWDSs provide benefits to serial code through fine-grained

parallelism within data structure operations, an advantage that TM cannot produce; TM

relies on the availability of task parallelism and multicore processing. Future work can

investigate how HWDSs in a multicore platform can provide HWDS-mediated sharing and

compare that with TM.

2.7 Summary of Related Work

None of the prior art approaches the problem of memory limiting system performance from

a HWDS point-of-view. Implementation similarities between HWDSs and other systems

abound, and I have reviewed those which are most similar. This thesis shows that OS sup-

port elevates HWDSs to improve applications in multitasking environments. The related

work suggest other areas that HWDSs may benefit, such as reconfigurable computing or

work-offloading in a multicore platform.

27

Chapter 3 – OS Support for HWDSs: Generalities

Software support can help circumvent the size and sharing limitations of hardware so that

applications can benefit from HWDSs. This chapter describes the generic aspects of such

support, and subsequent chapters describe aspects that are specific to the priority queue

and map HWDSs.

3.1 Overflow Handling

This study, inspired by work in fine-grained task-level parallelism [73, 109], adopts an

exception-based HWDS approach, as opposed to an interposition-based HWDS [27] which

avoids exceptions by checking (with software) before every HWDS access. The HWDS

generates an overflow exception when the size of the data structure exceeds the capacity

of the hardware. An overflow exception handler then processes the exception by spilling

nodes from the HWDS. When the used capacity of the HWDS falls below a programmable

threshold—and there are spilled nodes—control logic raises an underflow exception. The

underflow handler fills the HWDS from the overflow data structure.

Spilling causes a problem for operations that target spilled nodes: software must imple-

ment the operation on the nodes in the spill area. When an operation fails while using an

exception-based HWDS, control logic raises a failover exception and the exception handler

emulates the operation on the nodes in the overflow data structure. (Interposition-based

approaches must determine whether an operation should target the spilled nodes or the

HWDS.)

Overflow handling introduces the following HWDS instructions:

• get-context: queries the context of the HWDS to determine the cause of an excep-

tion and the interrupted instruction.

28

• spill: Moves a node from the HWDS to backing storage.

• fill: Moves a node from backing storage to the HWDS.

A HWDS implements spill with the data structure’s delete operation, and fill as an

insert operation, where the node to delete or insert is chosen according to a HWDS-specific

policy. Sections 4.2 and 5.2.2 describe these policies for hardware priority queues and

hardware maps, respectively. get-context can be implemented in a control unit alongside

the HWDS that stores the most recent HWDS operation and its arguments.

Exceptions allow software to be oblivious to the HWDS capacity, but they induce over-

head that reduces the throughput and predictability of applications. The cost imposed by

overflow handling depends on the implementation of the overflow data structure, frequency

of overflow/underflow/failover, and the cost of executing the exception handler. Experi-

mental evaluations in subsequent chapters of this thesis quantify the costs of overflow

handling.

3.2 HWDS Assignment

Sharing the HWDSs adds complexity to both hardware and support software. The main

addition is that the hardware needs to distinguish data structures; in prior work, there

was a one-to-one mapping between data structure and HWDS. Loosening that mapping

to many-to-one introduces the problem that the HWDS must have some way to separate

or distinguish data structures and their operations. As with other facets of HWDS design,

more than one solution exists for this problem. The solution I adopt is to add an identifier

to every instruction that accesses the HWDS and for the hardware to track which data

structure currently is in use. Exception handlers use the identifiers to store overflow in

separate data structures. I chose this approach because the hardware cost is small (an

29

extra register and some comparators) while supporting a wide range of policies for how

HWDSs are shared. The main drawback is that each data structure must have a unique

identifier.

HWDS assignment introduces the following instructions:

• save-context: save the data from a HWDS to backing storage and make that HWDS

available for use

• restore-context: assign the HWDS and (optionally) restore data

A HWDS context switch is a save-context followed by a restore-context. As the uti-

lized capacity of a HWDS increases, the cost to save-context also goes up. In Section 6.4,

I evaluate assignment algorithms that can limit the usable size of a HWDS in order to limit

the cost of the context switch.

HWDS assignment can be solved statically or dynamically. Static assignment deter-

mines offline which data structures are assigned to use HWDS resources and at runtime a

HWDS context switch swaps one assigned data structure for another. Dynamic assignment

permits the OS to make assignment decisions online. Some mechanisms for dynamic assign-

ment are (1) permitting data structure operations to proceed without hardware support

(assignment to a software implementation), (2) saving the context of the currently in-use

HWDS and restoring the context of the requested data structure, or (3) suspend the task

making the request until a HWDS becomes available. With (1), every data structure opera-

tion raises an exception that emulates the operation in software—a prohibitively expensive

solution. (Interposition-based approaches can implement (1) without such expense.) Mech-

anism (2) has the drawback that it can lead to a problem analogous to thrashing; in the

worst case, every access to a HWDS could cause a save-context. A concern with (3) is

starvation. This thesis presents and evaluates static assignment algorithms and dynamic

assignment using mechanisms (1) and (2); future work can evaluate policies and algorithms

30

for HWDS assignment more thoroughly.

If software attempts to access a data structure that is not presently in the HWDS

context, then control logic triggers an exception. The OS can assign the data structure to

an available HWDS, save the context of a currently used HWDS and assign it to the data

structure, or assign the data structure to use software only.

3.3 Experimental Infrastructure

I implemented HWDSs in the Simics/GEMS simulator [83]—a functionally correct, cycle-

accurate full system simulator for an out-of-order architecture (based on the Alpha ar-

chitecture) that executes the SPARC v9 instruction set. The architectural parameters I

chose are representative of an embedded system: 75 MHz CPU, 80 cycle memory latency,

and a 4-issue 5-stage pipeline. The implementation extends the SPARC instruction set to

use a reserved opcode for HWDS instructions, which are executed with a new functional

unit. This functional unit operates atomically and non-speculatively. Although the HWDS

can achieve single-cycle latencies for priority queue operations, restricting the unit to be

atomic and non-speculative increases the latency to around 12 cycles for the simulated

architectural parameters.

I modified RTEMS [91] to provide OS support for HWDSs. OS modifications include

HWDS exception handling, overflow data structure implementations, task scheduling al-

gorithm implementations, a rudimentary HWDS interposition library, and macros to emit

HWDS instructions. I also modified the GCC compiler to support the HWDS instructions,

although presently the only way to emit these instructions is with hand-written assembly.

31

Chapter 4 – Priority Queue HWDS

This chapter shows how the priority queue HWDS can be supported by the OS to support

applications that may require overflow handling for large data sets or concurrent access

to the HWDS resources. HWDSs can be effectively used in multitasking environments

when the hardware is managed properly. Intuitive solutions for sharing and overflow do

not achieve adequate performance; in the presence of overflow, simply using a well-known

and efficient overflow data structure leads to worse performance than using a software-only

data structure implementation.

4.1 Priority Queue: an Example HWDS

A priority queue is a data structure that contains key-value pairs where the key is a priority

upon which the structure is sorted. Usual operations on a priority queue are:

• peek [first, top]: returns the highest priority node

• enqueue [insert, push]: adds a new node

• dequeue [delete-min, pop]: removes and returns the highest priority node

• change-key [decrease-key]: modifies a node’s key (priority)

• extract [delete]: removes a given node regardless of priority

• merge [meld]: combines two priority queues into one

A priority queue is stable if nodes with the same priority are dequeued in first-in, first-out

(FIFO) order. The importance of priority queues to application performance can be seen

in the examples of Section 1.1.

32

4.1.1 Software priority queues

As many software priority queue implementations exist as sorting algorithms: Any sorting

algorithm can implement a priority queue [123]. For example, insert-sort implements a

priority queue with a linked list, heap-sort implements a priority queue with a heap, and

tree-sort implements a priority queue with a BST. A traditional priority queue implemen-

tation uses a heap; an implicit heap, which stores a binary heap as an array, is a common

implementation. Variants of the heap include the binary heap, implicit heap, leftist tree, bi-

nomial queue (binomial heap), pagoda, skew heap, Fibonacci heap [49], pairing heap [48],

Brodal queue [22], and soft heap [28]. BSTs can implement priority queues by keeping

track of the extreme (min and max) values in the tree. Common BST implementations of

a priority queue use a red-black tree or a splay tree. An advantage of a BST over a heap is

that the BST can more readily handle duplicate keys (tied priority).

In 1986 Jones concluded “[i]mplicit heaps are among the worst choices for queues smaller

than 20 nodes–and consistently worse than other priority-queue implementations” [61]. But

in 1996 LaMarca and Ladner [74] stated this rebuttal:

[T]he low memory overhead of implicit heaps makes them an excellent choice as

a priority queue, somewhat contradicting Jones’s results. We observed that the

high memory overhead of the pointer-based, self-balancing queues translated

into poor memory system and overall performance.

And in 2010, Hendriks claimed “[f]or current image analysis programs, the best implemen-

tation of that priority queue is the implicit heap. It has the smallest possible memory

usage and is faster than all other implementations tested. . . [except] for very large queue

sizes [82].” These conclusions indicate that implicit heaps are appealing for at least some

applications. This thesis uses implicit heaps as a software priority queue because they are

simple and work well in common cases.

33

4.1.2 Hardware priority queues

Hardware priority queues motivate the HWDS approach: enqueue and dequeue happen

in constant time, whereas the fastest software implementations take logarithmic time for

at least one of the two operations. An example hardware priority queue, the shift register

priority queue, is shown in Figure 4-1. The shift register priority queue is an array of

priority and data payload tuples that are sorted by priority value. A shift register block

encapsulates each tuple, and each block connects to its two neighbors. Global lines connect

all the blocks to the input and control. Global broadcast lines limit the scalability of the

shift register priority queue, but each block makes a decision locally so that sorting happens

in parallel. enqueue broadcasts a new tuple to all blocks. Each block sends its current

tuple to the left and compares its current priority value, new priority, and priority from the

right. If the new priority is less than the current priority, then the block keeps its current

data. If the new priority is between the current priority and the priority from the right,

then the block latches the tuple. Otherwise, the block latches the right neighbor’s tuple.

dequeue is simple, with each block sending its tuple to the right and latching from the

left. Other hardware priority queue implementations eliminate the global lines—see the

discussion in Section 2.1.

extract can be implemented in the shift-register priority queue by broadcasting both

the target payload and priority with a new control signal, and by adding comparators to

check the target payload against the stored payload. The target node shifts in its left

neighbor. By comparing the priority value, the lower priority nodes will know to shift their

values to the right and latch values from the left. Two problems present themselves: the

high cost of comparators and insufficient knowledge at nodes that have the same priority

value as the target. A solution to the former is to replace the payload with a tag, which

can be sized according to the length of the hardware priority queue instead of the size of a

34

Figure 4-1: A priority queue implemented in hardware.

pointer. This solution increases latency since peek needs to translate a tag to a pointer and

vice versa for extract: a CAM can implement tag translation efficiently. Using tags does

provide an advantage by reducing the storage and comparison cost for payloads. Sorting

nodes that tie in priority by payload (tag) solves the latter, and can be done in parallel

with the priority comparisons, so although sorting ties by payload adds work to enqueue,

it does not affect latency. However, sorting by payload dictates policy to the priority queue

mechanism, which is not in the spirit of this thesis. (As is, the hardware priority queue

implements FIFO on ties, which dictates a policy that supports a stable priority queue.)

For now, extract is modeled with the same latency as enqueue.

A systolic priority queue [77] might provide more flexible policies by instructing the

nodes lower than the target to shift explicitly, and tag lookup might be pipelined or proceed

in parallel with the first systolic block. Future work can evaluate implementations of

extract for different hardware priority queue structures.

35

4.2 Handling Overflow with a Priority Queue HWDS

The hardware mechanism for fill is simply enqueue, but spill requires an operation

that can return a value from an arbitrary position within the HWDS—in particular, the

ability to extract the last (lowest priority) node in the queue.

An intuitive solution for overflow handling would use a binary heap as an overflow data

structure—Chandra and Sinnen [27] use one. But blindly enqueuing sorted data into a

binary heap is wasteful. (Indeed, inserting nodes sorted low-to-high maximizes the work

done in a min-heap that inserts nodes at a leaf and heapifies up.) By leveraging the

knowledge that the data are sorted, overflow handling can make more intelligent decisions.

Consider instead a sorted linked list implementation of the overflow data structure that

merge-sorts overflow nodes. Suppose the number of overflow nodes is k and the size of the

overflow data structure is n. The cost of overflow then is approximately k∗lg(n) for a binary

heap and k + n for a linked list, so when k > n
lg(n)−1 the linked list will outperform the

binary heap. With an exception-based approach, the amount of work done during overflow

(k) should be tuned to amortize the cost of the exception handler while minimizing the

future costs of exceptions. With a HWDS of 128 nodes and k = 64 so that half the nodes

are removed during overflow, the linked list approach should outperform the binary heap

for priority queues less than about 512 nodes. In practice the operation costs for the two

differ enough that the linked list approach is superior to the binary heap for even larger

sizes, but eventually the linear scaling factor of the linked list does limit performance as

the size of the priority queue grows.

I implemented both binary heap and linked list overflow data structures. The binary

heap implementation is a split HWDS: an overflow data structure that does not take

advantage of the HWDS. The linked list implementation is a united HWDS: an overflow

data structure that leverages structural locality and the HWDS capabilities.

36

For a priority queue, the overflow handling needs to be augmented slightly to ensure

that ordering violations do not exist between high-priority nodes in the overflow data

structure and lower-priority nodes in the HWDS. Hardware modifications are necessary

to mark the lowest priority node remaining in the hardware priority queue after spilling.

Hardware will also mark nodes when they are enqueued with a lower priority than a marked

node. In a shift-register priority queue, this marking requires a node to consult with its

right neighbor when latching a new entry. When the head of the priority queue is marked,

control logic triggers an underflow exception. The underflow handler fills the HWDS and

clears the mark on nodes with higher priority than the lowest priority node remaining in

the spill region.

4.3 Experiments

Priority queues are the critical data structure in applications and systems software—some

uses include planning, image processing, simulations, timer management, and task schedul-

ing. This section describes two application domains, discrete event simulation and plan-

ning, and the experiments conducted to validate and evaluate the contributions of this

thesis for handling overflow and sharing for priority queue HWDSs.

I implemented software-only priority queues and the priority queue HWDS using the

experimental infrastructure described in section 3.3. For the software-only priority queue

implementations, I implemented a heap (implicit) and a splay tree. I also implemented

these priority queues as overflow data structures for split HWDSs, in addition to the linked

list united HWDS that is described in section 4.2.

37

4.3.1 Discrete event simulation

Discrete event simulations can spend up to 40% of execution time managing the pending

event set, which is implemented efficiently as a priority queue [105]. Synthetic benchmarks

that model the pending event set are used to evaluate priority queue implementations

[61, 105].

One model of the pending event set, the classic hold model [61], is useful for bench-

marking priority queue performance with a HWDS. A benchmark in the classic hold model

executes in two phases: the first phase slowly builds a priority queue to a predetermined

maximum size, and the second phase executes a series of hold operations—a dequeue of

the highest priority node, incrementing the priority of the dequeued node, and an enqueue

of the node. The classic hold model is appropriate for evaluating HWDSs because the

maximum size of the priority queue, which is a critical performance parameter, remains

fixed throughout the second phase of the benchmark. The variables that affect perfor-

mance in the hold model of a software-implemented priority queue are its implementation,

size, shape (balance), distribution of priorities, and the distribution of priority increment

values. A hardware priority queue must consider the maximum capacity of the hardware

and the costs for overflow.

In order to evaluate the efficacy of overflow handling and sharing, I implemented a

microbenchmark based on the classic hold model and conducted experiments to evaluate

the performance of the overflow handling and sharing support described in Sections 3.1, 3.2,

and 4.2. I obtain cycle-accurate measurements of execution time that permit calculating

a precise average execution time for each insert and hold operation during phase one,

and for each hold operation in phase two; smaller numbers are better for the hold model

benchmarks.

38

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00
M

e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
HWDS(∞)

(a) Infinite hardware.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
HWPQ(128)

(b) Binary heap overflow.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
HWPQ(128)

(c) Linked list overflow.

Figure 4-2: Overflow data structure implementation matters. The average hold time of a
priority queue HWDS with infinite capacity, a binary heap split HWDS, and a linked list
united HWDS compared to software priority queues. Mean hold time is averaged across
1024 hold operations; data structure size is in number of nodes.

Overflow handling for large priority queues

The first set of hold model experiments establish the need for intelligent management of

overflow data. These experiments build up the priority queue to a maximum size that

varies between 64 and 1024 nodes by powers of 2, and execute n hold operations (where n

is 1024 or 16384).

Figure 4-2a shows the obvious benefit when a single application uses an infinite-size

HWDS—hardware is faster than software, an unsurprising result. (Note that the average

cost is around 100 cycles for infinite hardware because the hold time includes 3 HWDS

operations and one arithmetic operation, as well as memory operations to fetch the priority

increment amount and benchmark code.) Figure 4-2b is more interesting—it shows how

overflow handling using the intuitive approach of a heap as an overflow data structure

performs poorly.

If the knowledge that the HWDS contains sorted data is leveraged, a 128-node HWDS

outperforms software-only solutions even in the presence of overflow, as shown in Fig-

ure 4-2c. If one considered only the intuitive approach, opportunity for improvement from

39

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
Heap HWDS(128)
List HWDS(128)

(a) 128-node HWDS.

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
Heap HWDS(1024)
List HWDS(1024)

(b) 1024-node HWDS.

Figure 4-3: Performance of software and hardware priority queues averaged across 4,096
hold operations with the same ratio of HWDS capacity to data structure size for 128- and
1024-node HWDSs.

intelligent management of overflow data would be missed. These results indicate that the

OS support for overflow handling, in particular the use of a united HWDS, is a useful

contribution for improving the performance of at least some kinds of applications that use

priority queues.

Figure 4-3 shows how increasing the capacity of the HWDS affects performance, and

how the performance trends are similar for a fixed ratio of HWDS capacity to the number

of nodes in the data structure. Note that for this benchmark the merge-sorted linked list

united HWDS outperforms software when the data structure size is less than 16 times the

HWDS capacity for both the 128- and 1024-node priority queue HWDSs. These results

demonstrate that larger data structures can be handled by proportionally larger HWDSs

using the same policies and OS support as the smaller HWDSs.

The last experiment with a single task accessing an unshared HWDS evaluates the

effectiveness of the united HWDS under an increased number of hold operations (16,384)

and varying the probability distribution of the priority increment, which is an important

parameter for determining performance of a priority queue implementation. Figure 4-4

shows the results for this experiment. With respect to the results shown in Figure 4-2b,

40

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
HWDS(128)
HWDS(∞)

(a) Exponentially distributed
priority increment.

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
HWDS(128)
HWDS(∞)

(b) Biased priority increment
(toward FIFO)

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
HWDS(128)
HWDS(∞)

(c) Bimodal priority increment

Figure 4-4: Performance of software and hardware priority queues averaged across 16384
hold operations.

the benefits of the united HWDS persist, or even improve, with more work (hold opera-

tions). In terms of the priority increment distribution, the united HWDS does well with an

exponential (negative log) distribution and one that is biased toward FIFO behavior—the

good performance on the biased distribution may seem surprising, since the biased values

ought to cause overflow regularly, but the implementation of the overflow data structure

plays a part. The merge sort iterates from the end of the overflow linked list toward the

start, and the overflow nodes presumably will be toward the rear of the overflow list because

of the bias, so the overflow handler does not need to traverse as much of the data structure.

The HWDS outperforms the binary heap with all three distributions, and underperforms

the splay tree only with the bimodal distribution.

HWDS assignment for multiple priority queues

I created two kinds of multi-tasking pending event set benchmarks. The first kind uses

tasks that each access a private priority queue of the same fixed maximum size. The second

kind also uses tasks that access their own priority queue, but the maximum size varies—in

particular, each task has a maximum size exactly half that of the next largest, with a

41

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00
M

e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
HWDS(128)
HWDS(∞)

(a) Same size priority queues, ex-
ponential distribution.

0

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
HWDS(128)
HWDS(∞)

(b) Different size priority queues,
exponential distribution.

0

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
HWDS(128)
HWDS(∞)

(c) Different size priority queues,
priority increment biased toward
FIFO.

Figure 4-5: Four tasks sharing a hardware priority queue with 1024 hold operations.

smallest maximum size of 16. Varying the maximum size changes which data structures

will benefit most from using the HWDS. The task scheduler is a preemptive time-slicing

round-robin scheduler that allocates a 10 millisecond time slice to each task in each round.

Figure 4-5 shows the effect of sharing HWDS resources on both kinds of multi-tasking

benchmarks with an assignment algorithm that permits any data structure to utilize the full

capacity of the HWDS. Figures 4-5a and 4-5b are the first and second kind of benchmark

described in the previous paragraph. Figure 4-5c is the second kind of benchmark, but

with a priority increment distribution that is biased toward FIFO queue access. These

results show that sharing imposes a cost even for an infinite-capacity HWDS, because the

context switch must save and restore data in the HWDS.

In Figure 4-5a, a large spike in performance is seen near the 1024-node priority queue.

This spike is due to the increasing cost of context switching, which is causing more context

switches to occur because the workload is not finishing as quickly. The performance of

HWDS in Figure 4-5b at points 2048 and 4096 owes its performance to the smaller sizes

included—the 2048 point includes a 256, 512, and 1024 queue in addition to the 2048, and

the smaller queues perform better with a HWDS than with software. The performance of

42

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e

a
n

 O
p

e
ra

ti
o

n
 T

im
e

splay tree
HWDS(128)
HWDS(1024)
HWDS(∞)

Figure 4-6: Multitask sharing of same-sized priority queues with 4096 hold operations and
three sizes of HWDS.

the HWDS when the priority increment is biased illuminates the fact that the size-limited

HWDS actually outperforms the infinite-capacity HWDS. The performance benefit is due

to the lesser cost of context switching a size-limited HWDS, which motivates experiments

in Section 5.3 that limit the permissible HWDS size which a data structure may use.

Figure 4-6 shows how increasing the number of hold operations affects performance for

the first kind of benchmark; these results also show how increasing the size of the HWDS

shifts the performance curve. Comparing Figure 4-6 with Figure 4-5a, as the number of

operations increases, the performance of the HWDS improves (at least for the observed

parameter range). The performance of the infinite-capacity HWDS does worse than the

1024-node HWDS for the larger queue sizes because the cost to context switch all of the

nodes from the infinite-capacity HWDS is larger than the cost to context switch the smaller

HWDS. This performance loss due to context switching justifies HWDS assignment that

limits the usable size of a HWDS in order to constrain the context switch cost, which I

explore in Section 6.3.

Figures 4-7a and 4-7b show that the biased and bimodal distributions do affect the

43

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
HWDS(128)
HWDS(∞)

(a) Biased priority increment.

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

heap
splay tree
HWDS(128)
HWDS(∞)

(b) Bimodal priority increment.

Figure 4-7: Multitask sharing of same-sized priority queues with 4096 hold operations and
varying priority increment distributions.

HWDS overflow performance with sharing. Even with the cost of context switching, the

HWDS still performs better than a binary heap at the given data structure sizes, although

the splay tree does better in general and especially for the bimodal distribution.

The experimental results using multiple tasks that share a HWDS indicate that even

simple HWDS assignment can improve performance. The results also motivate further

investigation into smarter HWDS assignment, which is described in the subsequent chapters

of this thesis.

4.3.2 Planning algorithms

An important algorithm that makes heavy use a priority queue is Dijkstra’s shortest-path

algorithm, which is used for routing in network devices, navigation in GPS devices, and as

a basis for the A* family of path-planning algorithms. Dijkstra’s algorithm benefits from

change-key, which makes handling overflow more challenging. Chandra and Sinnen [27]

show that, if change-key is restricted to increasing priority, then inserting a new node with

the updated priority value and allowing the old node to be stale emulates change-key in

a hardware priority queue. This solution, however, increases pressure on the hardware

44

priority queue size by adding new nodes when updating a node. Instead, I implemented

change-key as a meta-operation that combines extract followed by enqueue with the

new priority; a single macro implements this meta-operation so that the user is unaware

of implementation details. Software can implement change-key directly since the meta-

operation may be less efficient than a direct implementation for some data structures, for

example the binary heap.

To evaluate the cost of overflow handling, I use a version of Dijkstra’s algorithm that

is executed on real-world maps taken from the 9th DIMACS shortest path implementation

challenge benchmarks [26]. For the software data structure implementation, the SmartQ

implementation provided with the challenge benchmarks is used. I compare SmartQ with

a modified benchmark that uses a hardware priority queue.

The DIMACS GPS benchmarks evaluate both the potential limit of improvement for

HWDSs and the performance that is obtained using the overflow support described in

Section 4.2 when the capacity of the hardware priority queue is less than the application’s

data needs.

To find the potential limit of improvement, I instrumented the benchmarks with per-

formance counters to measure the maximum size of the priority queue, the number of

priority queue operations (enqueue and dequeue) that execute, and the percent of time

that each benchmark spends on priority queue operations. The benchmarks are executed

using timing mechanisms that are provided with the challenge code. These timers query

the host system for the user time of the process running the application. The timing elides

all startup and shutdown costs. To time individual operations, timer calls are added before

and after each priority queue operation and ran the application both unmodified and with

the timer calls. The difference in total time taken between the two runs is the overhead

for making the extra timer calls, half of which is deducted from the sum of the time taken

45

Table 4-1: Priority queue behavior in selected DIMACS GPS benchmarks

Input Max Size Operations Time

New York City (NY) 925 528693 28.5%
San Francisco (BAY) 886 642540 27.1%
Colorado (COL) 945 871332 30.1%

for priority queue operations (because the time accounted toward the priority queue oper-

ations includes half of the timer overhead). Then the ratio of the time taken for priority

queue operations to the total time taken by the unmodified application is a measure for

the amount of time spent by the application in the PQ.

I gathered performance counters for all of the USA road distance benchmarks in the

challenge: Table 4-1 summarizes the measurements for the challenge benchmarks used in

the following experiment to evaluate overflow handling for real-world data sets. The full

set of measurements is presented in Section 6.4.

The performance measurements show that up to 30% of the execution time of the

benchmarks is spent executing priority queue operations. This value gives an estimate of

the upper bound of performance improvement from HWDSs.

I also executed modified versions of the smallest three benchmarks with the Sim-

ics/GEMS experimental infrastructure. The duration of the benchmarks is reduced to

issue 5 path queries; this reduction is necessary so the benchmarks terminate in a reason-

able amount of time when executed under cycle-accurate simulation.

Figure 4-8 shows the results from executing these benchmarks, with the performance

calculated as a percent improvement versus the SmartQ implementation. Note that the

maximum size of the priority queue for these three inputs is less than 1024 (but greater

than 800). When the priority queue HWDS is size 1024 there is no overflow and, as

expected, the performance improvement is close (within about 4 to 7 percentage points)

to the total amount of time spent in the priority queue as measured and reported in

46

table 4-1. More interesting is the performance when overflow does occur. With a 512-node

hardware priority queue, the performance of two of the benchmarks is still close to that of

the non-overflow. Even when a 256-node hardware priority queue is used, the BAY and

COL benchmarks still obtain practical performance improvements. The NY benchmark

has negative performance with a 256-node hardware priority queue size that might be

attributed to the ratio of priority queue operations to maximum priority queue size.

The experiments with the classic hold model suggested that increasing the number of

operations while maintaining the queue size leads to improved HWDS performance, and

the same appears to be the case with the GPS benchmark. Finding the ideal ratio would be

an interesting study. These results demonstrate that a priority queue HWDS can benefit

real-world application software because of the OS support for overflow handling introduced

in this thesis.

Figure 4-8: Performance of priority queue HWDS as percent improvement over SmartQ
with modified—shortened to 5 queries—DIMACS GPS benchmarks.

47

Figure 4-9: Comparison of United HWDS with Split HWDS. Execution time of one itera-
tion of GPS challenge benchmark on Colorado input using the OS support proposed by this
thesis (UnitedHWDS) compared to prior art (SplitHWDS) [27] normalized to software-only
(SmartQ). Larger is better.

A last experiment with the DIMACS GPS benchmark evaluates how the exception-

based united HWDS approach proposed and implemented in this thesis compares with the

interposition-based split HWDS proposed and implemented by Chandra and Sinnen [27].

I implemented an interposition-based split HWDS that uses a binary heap as the overflow

data structure, and I modified the DIMACS challenge code to use this HWDS and to

ignore updates (change-key) to nodes. This implementation is equivalent to what has

been proposed in the related work. Figure 4-9 shows the normalized (to the SmartQ)

execution times for one iteration of the Colorado GPS challenge benchmark using the

SmartQ, the interposition-based split HWDS proposed by others, and the exception-based

united HWDS that this thesis espouses; larger numbers are better. For sizes over 128, the

48

united HWDS improves performance as shown earlier. With a HWDS size of 128, neither

HWDS approach does as well as SmartQ—indeed, the split HWDS never does better than

software.

4.4 Summary

This chapter demonstrated the OS support for HWDSs using a well-known HWDS, the

hardware priority queue. An extract operation is proposed for the shift-register hard-

ware priority queue. A united HWDS is described and evaluated, and its performance

is compelling on both discrete event simulation and GPS navigation benchmarks using

real-world data. HWDS sharing is evaluated with a multitasking benchmark that re-uses

the discrete event simulation benchmark framework. The next chapter introduces the map

HWDS, which demonstrates how the OS support for the priority queue HWDS translates

to another useful data structure.

49

Chapter 5 – Map HWDS

A map is a data structure that organizes data to support efficient searching. Searching is

a fundamental problem in computing: return the node with a specific key from a set of

(key, value) nodes. The specified key is the argument to the search [68]. Usual operations

on a map are:

• insert: adds a new node

• extract: removes a given node

• change-value: modifies a node’s value

• search: finds a node with the given argument

A search can be exact or approximate if the returned node has the same or closest key as the

argument respectively. Keys can have arbitrary length and meaning; common keys include

numbers, strings, indices, and hash values. If the search compares key and argument

directly then it is a comparison search; a digital search relies on the binary representation

of the argument to find the key. The skewness of a search is a measure of the asymmetry

of the probability distribution of arguments; text search tends to be strongly skewed, so

skewness is an important parameter to consider when evaluating solutions for searching.

This thesis considers exact comparison search with numerical keys with varying skewness

and maps that use insert, extract, and search; future work may consider other kinds

of search problems and maps that support a change-value operation.

5.1 Software-based Search

Common data structures that support efficient searching are the BST, balanced trees, self-

adjusting trees, hash tables, and multiway trees; Knuth [68] describes these in great detail in

50

his textbook. Balanced trees, such as the AVL and red-black trees, ensure O(log(n)) search

(and insert, remove) operations. Self-adjusting trees, such as the splay tree, relocate nodes

within the tree so that frequently accessed nodes are located nearer the root to improve

performance for skew search. Probabilistic search structures, such as the skip list [102], use

randomization for faster creation and maintenance and provide probabilistic algorithmic

performance.

Bell and Gupta [13] evaluated numerical comparison search using BSTs, AVL trees,

and splay trees; I adopt their evaluation benchmarks to evaluate the OS support for map

HWDSs. Their findings indicate that AVL trees outperform the other trees, although the

gap closes when data are skewed. While surprising, their results have also been shown by

others for string search: Williams et al. [131] found that BSTs outperform treaps, splay

trees, and red-black trees; a modified splay tree does improve over BSTs.

5.2 Map HWDS

Hardware can search small sets of records with numerical keys efficiently with a CAM, but

it, like a hardware priority queue, does not support overflow handling or sharing directly. A

CAM also does not support direct comparison searches except for specialized uses in which

the values are integers that fall within the address range of the CAM; such is the case

for the page table-TLB that is described in section 2.1.6. However the solutions presented

earlier in chapter 3 do translate to CAM-based (and other) map HWDSs.

5.2.1 CAM-based map HWDS

An implementation of a map HWDS can use a CAM and a fast random-access memory

(RAM)—such as SPM—that are the same size. To implement insert, the HWDS stores

the key in the CAM at an available location, and stores the value in the same location

51

in the RAM, marking the location unavailable. (The entire addressable range is marked

available during initialization.) An extract does a search for the key, marks the memory

at the returned location as available, and returns the node. During a search, the HWDS

control logic passes the argument to the CAM to obtain the location, indexes the RAM at

that location to get the value, and returns the node comprising key and value.

5.2.2 Overflow handling

The hardware mechanisms for spill and fill are extract and insert. Unlike the priority

queue HWDS, I am unaware of any united HWDS for maps. Therefore any efficient map

data structure implements an appropriate overflow data structure. I implemented three

such structures: a red-black tree, a splay tree, and a skip list.

5.2.3 Least recently used (LRU) spilling and fill-after-search

Skewed search provides an opportunity for more intelligent overflow handling. In particular,

a strongly skewed search will repeat some arguments more often, which indicates that

temporal locality may be exploited. To evaluate whether temporal locality in overflow

handling makes a difference, I re-implemented spill to remove the least recently used

(LRU) item from the map HWDS and for failover during search to execute a fill if

the node is found. LRU-based overflow with fill-after search attempts to exploit temporal

locality in skewed searches.

5.2.4 Size checks

Even with intelligent overflow handling, when the size of a map exceeds the capacity of

the hardware by a sufficient amount the performance of a map HWDS is worse than

just using software. I implemented a simple HWDS assignment algorithm that detects if

52

the requested size of a data structure exceeds the HWDS capacity and, if so, assign to

software-only. The result of the check hooks software function calls that can either go to

a HWDS or a software implementation. Currently this check is done only ahead of time

with the cooperation of application software; future work can consider a dynamic change,

which would likely demand the use of an interposition-based HWDS or additional hardware

support.

5.2.5 Dynamic eviction

When applications search and extract in the overflow data structure, the performance

of a HWDS suffers, especially with an exception-based HWDS. Another opportunity to

improve performance is to detect these conditions and prevent them from happening if

possible. A simple, direct method is to evict the data structure from the hardware and rely

solely on a software implementation. This method requires an interposition-based HWDS,

since otherwise every single data structure operation would cause a failover exception. I

implemented a basic interposition-based HWDS to study the effect of dynamic eviction.

The HWDS assignment policy using eviction decides to assign a data structure to software-

only when an extract is detected that targets a node in the overflow data structure.

5.3 Experiments

Maps are the critical data structure in applications and systems software—some examples

include language interpreters, key-value stores, virtual memory address mapping, sched-

ulers, and timers. This section describes a synthetic search benchmark and experiments

conducted to validate and evaluate the OS support for overflow handling and sharing

proposed in this thesis for map HWDSs. I implemented software maps and the map

HWDS—described earlier in Section 5.2.1—in the experimental infrastructure described in

53

Section 3.3. The software-only map implementations include a red-black tree, splay tree,

and skip list. I also implemented these software maps as overflow data structures for split

HWDS.

To test the map HWDS, I implemented a synthetic benchmark described by Bell and

Gupta [13] that has four steps:

1. Select unique integer keys at random from a uniform distribution.

2. Insert every key in each tree under test and in the access probability table, a table

containing pairs of key and probability of access that is sorted by probability; prob-

ability values affect skewness of key access and are drawn from a modified Zipf’s

distribution.

3. Issue pairs of extract-insert operations and search operations following an activity

ratio—the ratio of search to extract-insert.

4. Record the time consumed during the operations for performance measures.

Key, probability selection, and operations are generated offline. Skewness is controlled by

the variable α, which yields the uniform distribution when equal to 0 and Zipf’s distribution

when equal to 1. In experiments using this benchmark, α varies between 0 and 1.420—in

general, only the extreme values are interesting, so representative results are shown for α

equal to 0, 1.058 (closest to Zipf’s), and 1.420.

As with the experiments with the classic hold model described in section 4.3.1, the

search benchmark proceeds in two phases of execution. The first phase (step 2 above)

builds the map, and the second phase (step 3) modifies and searches within the map. In

addition to the established search parameters–activity ratio and skewness—the map’s size

(number of unique integer keys) is varied to stress the hardware’s capacity. Measurements

of execution time give the average time for each search, extract, and insert during the

54

second phase of execution.

These experiments build up the map to a maximum size that varies between 64 and 2048

by powers of 2, and executes n operations (either 1000 or 4000 for the results presented

here) during phase two. An update is counted as one operation, so depending on the

activity ratio, the number of total HWDS instructions varies (from 1 ∗ n to 1.8 ∗ n where

n is the number of operations).

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
skiplist
rbtree
HWDS(∞)

(a) 0% activity ratio, 1000 oper-
ations, α = 0.0.

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00
M

e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
skiplist
rbtree
HWDS(∞)

(b) 50% activity ratio, 1500 op-
erations, α = 0.0.

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
skiplist
rbtree
HWDS(∞)

(c) 80% activity ratio, 1800 oper-
ations, α = 0.0.

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
skiplist
rbtree
HWDS(∞)

(d) 0% activity ratio, 1000 oper-
ations, α = 1.420

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
skiplist
rbtree
HWDS(∞)

(e) 50% activity ratio, 1500 oper-
ations, α = 1.420.

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
skiplist
rbtree
HWDS(∞)

(f) 80% activity ratio, 1800 oper-
ations α = 1.420.

Figure 5-1: The improvement of infinite hardware and the performance of software map
implementations.

The first set of search benchmarks demonstrate the benefits of an infinite-size map

HWDS and the relative performance of the three software-only map implementations.

55

0

2
6
4

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(a) 0% activity ratio, 1000 oper-
ations, α = 0.

0

2
6
4

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(b) 0% activity ratio, 1000 oper-
ations, α = 1.420.

Figure 5-2: Overflow handling using the extract-last policy of priority queues with a 128-
node map HWDS (HWMAP). (Results with other parameters are similar to Figure 5-2a.)

Figure 5-1 shows the benefit when an infinite-size map HWDS is used with and without

skewness (α = 0 and 1.420). Figures 5-1a, 5-1b, and 5-1c show the results for activity ratios

of 0% (no updates), 50%, and 80% respectively with α = 0. The average cost with infinite

hardware is around 50 cycles because an operation involves one HWDS instruction and the

memory accesses to load the code and data for the operation. These charts also show the

relative performance of the software-only map implementations, among which the red-black

tree performs best in most cases, followed by the skip list then splay tree. On the other

extreme, Figures 5-1d, 5-1e, and 5-1e shows how with α = 1.420, the performance of the

infinite-size HWDS remains the same, but the performance of the software implementations

change. These results suggest that the splay tree does better when the map is read-mostly,

and the red-black tree does better under heavy updates. The skip list never outperforms

the trees and is omitted from the remainder of this thesis.

5.3.1 Overflow handling for large maps

The next set of search benchmark experiments establish the need for intelligent manage-

ment of overflow. Figure 5-2 shows how overflow handling using the same policy as a

56

priority queue HWDS—spilling the node with the largest key—performs poorly as the

map size increases. (Other values of α and activity ratio are similarly bad for the 128-node

HWDS. The overflow data structure is a red-black tree.)

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(a) 0% activity ratio, 1000 oper-
ations, α = 0.0.

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(b) 0% activity ratio, 1000 oper-
ations, α = 1.058.

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(c) 0% activity ratio, 1000 oper-
ations, α = 1.420

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(d) 50% activity ratio, 1500 op-
erations, α = 0.0.

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(e) 50% activity ratio, 1500 oper-
ations, α = 1.058.

0

2
5
6

5
1
2

1
0
2
4

2
0
4
8

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(f) 50% activity ratio, 1500 oper-
ations, α = 1.420.

Figure 5-3: Map overflow with LRU and fill-after-search, 1000 search operations.

5.3.2 LRU spilling and fill-after-search

Figure 5-3 shows that an LRU-based map HWDS that fills nodes found during a failover

search can handle overflow more effectively as arguments become more skewed and activity

ratio decreases. This result is not surprising, since a low activity ratio means more search-

ing, for which LRU should be effective, and the more skewness in the search arguments the

57

more temporal locality is available to exploit.

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(1024)

(a) 0% activity ratio, 4000 oper-
ations, α = 0.0.

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(1024)

(b) 0% activity ratio, 4000 oper-
ations, α = 1.420.

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(1024)

(c) 80% activity ratio, 7200 oper-
ations, α = 1.420.

Figure 5-4: Map overflow, 1024-node HWDS, 4000 search operations.

Figure 5-4 shows how a larger HWDS performs with a larger data structure size. Per-

formance is similar between the 128- and 1024-node HWDSs at a given ratio of HWDS

capacity to data structure size, except for the read-mostly skewed search which benefits

greatly from having a larger HWDS because the increased capacity enables the HWDS to

exploit temporal locality better. The map HWDS outperforms software when the ratio of

HWDS capacity to data structure size is less than 1.5:1. Note that these results use 4000

search operations rather than 1000; the number of operations had little effect on search

performance at this scale, although further experimentation is warranted to determine if

the operation count affects performance at larger scales.

Except for skewed search-only workloads, the map HWDS outperforms software only

when the map contains fewer than 50% more nodes than the HWDS capacity. The amount

of overflow that can be tolerated is much less than with the priority queue HWDS, and

future work should investigate how to increase the amount of overflow that the map HWDS

can handle. The priority queue benefits from exploiting structural locality in the united

HWDS, and perhaps a similar approach can be developed for the map HWDS.

58

5.3.3 Eviction

Figure 5-5 shows how an eviction upon extract HWDS assignment policy can help to curb

performance loss when overflow causes failover. With an eviction, the performance of the

interposition-based HWDS matches closely with the software-only implementations. These

results demonstrate that effective software support can yield performance that achieves

approximately the best of both worlds.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWLIB(128)
HWDS(128)

(a) 50% activity ratio, 1500 op-
erations, α = 0.0.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00
M

e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWLIB(128)
HWDS(128)

(b) 50% activity ratio, 1500 op-
erations, α = 1.058.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWLIB(128)
HWDS(128)

(c) 50% activity ratio, 1500 oper-
ations, α = 1.420.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWLIB(128)
HWDS(128)

(d) 80% activity ratio, 1800 op-
erations, α = 0.0.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWLIB(128)
HWDS(128)

(e) 80% activity ratio, 1800 oper-
ations, α = 1.058.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWLIB(128)
HWDS(128)

(f) 80% activity ratio, 1800 oper-
ations, α = 1.420

Figure 5-5: Map HWDS overflow handling with HWDS assignment to software upon first
extract.

59

5.3.4 Sharing for multiple maps

To evaluate sharing map HWDSs, I created separate search benchmarks and placed each

within its own task with a task-private map. Each search benchmark has identical pa-

rameters except for the maximum map size: each map has a maximum size exactly half

that of the next largest, with a smallest maximum size of 16. Varying the maximum size

changes which maps benefit from the HWDS. The task scheduler is preemptive time-slicing

round-robin with 10 millisecond time slices.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(a) 0% activity ratio, 4000 oper-
ations, α = 0.0.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(b) 0% activity ratio, 4000 oper-
ations, α = 1.058.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(c) 0% activity ratio, 4000 oper-
ations, α = 1.420.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(d) 80% activity ratio, 7200 op-
erations, α = 0.0.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(e) 80% activity ratio, 7200 op-
erations, α = 1.058

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(f) 80% activity ratio, 7200 op-
erations α = 1.420.

Figure 5-6: Multitasking search with overflow and different-sized priority queues.

Figure 5-6 shows the performance of an infinite-size map HWDS, software maps (splay

60

tree and red-black tree), and a limited-size, 128-node map HWDS on the multitasking

search benchmark. Each power of two over 128 causes another map to overflow; at 256

maximum size, only the one task using a map of that size suffers performance penalties due

to overflow. These results show that HWDSs can achieve substantial performance gains

versus software, and that as search becomes more skew, the splay tree performance meets

that of the red-black tree. Also, when mixing overflow and non-overflow workloads, the

HWDS can still perform well in some cases, but eventually does do poorly compared with

software-only map implementations.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(a) 0% activity ratio, 4000 oper-
ations, α = 0.0.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(b) 0% activity ratio, 4000 oper-
ations, α = 1.058.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(c) 0% activity ratio, 4000 oper-
ations, α = 1.420.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(d) 80% activity ratio, 7200 op-
erations, α = 0.0.

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(e) 80% activity ratio, 7200 op-
erations, α = 1.058

0

1
2
8

2
5
6

5
1
2

1
0
2
4

Data Structure Size

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

M
e
a
n
 O

p
e
ra

ti
o
n
 T

im
e

splay tree
rbtree
HWDS(128)
HWDS(∞)

(f) 80% activity ratio, 7200 op-
erations α = 1.420.

Figure 5-7: Multitasking search benchmarks with size-based assignment and different-sized
priority queues.

61

Figure 5-7 shows the multitasking search benchmarks with a HWDS assignment that

uses size checks to avoid using the HWDS in case the requested size of the map data

structure exceeds the available capacity of the HWDS. The performance of the HWDS

with size-checking assignment is better than simply using software-only. These results

show that applications can avoid being wasteful with a HWDS by only using the hardware

resources when they will be beneficial. As with the priority queue HWDS, how best to find

the best ratio of map HWDS capacity to data structure size is an open question.

5.4 Summary

This chapter presented a map HWDS that uses the same basic style of overflow handling

and sharing as the generic HWDS support explicated in Chapter 3. Enhancements were

proposed and evaluated, including LRU spilling and filling, dynamic eviction, and size-

based HWDS assignment to prevent expensive overflow. Experimental results demonstrate

the viability of map HWDSs and the proposed improvements. Some of the remaining issues

that are suitable for future work include fleshing out the map HWDS that is sketched in

Section 5.2.1, implementing and evaluating the usefulness of the change-value operation,

and inventing a united HWDS for searching.

62

Chapter 6 – Shared HWDSs for Hard Real-Time Systems

Note: Portions of this chapter were previously published [17].

HWDSs can reduce the latency and jitter of data structure operations, which can

benefit real-time systems by reducing WCETs. The OS support for overflow handling and

sharing proposed in this thesis permit applications to benefit from HWDSs; this benefit was

demonstrated in Chapters 4 and 5. However, real-time applications have different execution

requirements than general-purpose applications. This chapter explores those requirements

using a priority queue HWDS, presents two novel algorithms for HWDS assignment in a

real-time system, and evaluates these algorithms with synthetic task sets and benchmarks

modeled from priority queue behavior measured in two applications that are important

in real-time and embedded domains: the grey-weighted distance transform for topology

mapping and Dijkstra’s algorithm for GPS navigation. Experimental results indicate that

HWDSs can reduce the WCET of applications even when a HWDS is shared by multiple

data structures or when data structure sizes exceed HWDS size constraints.

6.1 Real-time Considerations for HWDSs

Unlike in general-purpose computing, latency, which affects predictability, trumps through-

put in a real-time system.

6.1.1 Overflow handling

For real-time systems, the execution time and rate of overflow and underflow exceptions

is important because those two parameters affect a task’s WCET when using a HWDS.

Exception handler execution time depends on the size of the overflow data structure and

the number of nodes spilled (equivalently filled). The rate of exceptions depends on two

63

factors: the rate of operations and the number of nodes spilled. The size and rate of

operations are application-dependent, but if they are bounded then the exception WCET

and rate depends on the amount of work done—the number of nodes spilled.

Tuning the number of nodes spilled by a priority queue HWDS to be any number k

less than or equal to half of the HWDS capacity limits the number of exceptions to at

most one overflow and one underflow per k operations. In any window of k operations

the worst case is that the entire HWDS is full of marked nodes and a peek operation

is followed by an enqueue. The peek induces an underflow exception since the head is

marked. The underflow handler fills the HWDS with k nodes and spills at least k nodes,

leaving the HWDS in a state with at least k unmarked nodes and possibly marked nodes

in the remainder of the HWDS. The HWDS can then satisfy at least k operations without

another underflow. The subsequent enqueue may cause an overflow exception which will

spill k nodes. At this point the HWDS can satisfy at least k operations without another

overflow. Tuning the handlers to spill half of the HWDS size minimizes the number of

exceptions taken, which is important because each exception that gets taken adds extra

fixed processing overhead to invoke the handler.

Failover exceptions are frustrating for a WCET analysis of HWDSs. In this work on

real-time systems, failover is not allowed to happen by tight control of application software.

(Additional software engineering is the norm in real-time system development, as is tight

hardware-software integration, so the extra control is not an unusual burden to developers.)

If the rate of failover exceptions is bounded, they would fit in a WCET analysis similarly

to the overflow and underflow exceptions.

64

6.1.2 Sharing

Sharing is handled similarly to the description in chapter 3, but with two adjustments.

First, the HWDS context switch tracks how many nodes it saves, and refills that data

structure with the same number of nodes. This adjustment ensures that the same number

of nodes are present in the HWDS when the context is restored, an important consideration

for bounding the cost of HWDS context switching. Second, a task is only permitted to

use one HWDS context; that is, only one of any given task’s priority queues may use the

priority queue HWDS. This second adjustment aligns the HWDS context switch with the

task context switch, which is important when analyzing a task’s WCET. The worst case

cost of a HWDS context switch is when the HWDS is full and the handler is refilling from

a previously full HWDS so that the handler spills and fills the entire HWDS. Similar

to overflow handling, the cost of a HWDS context switch depends on the overflow data

structure size and implementation, and the number of nodes in the HWDS.

6.2 Response Time Analysis

A HWDS affects task response time by decreasing WCET due to reducing operation la-

tency, but exceptions caused by overflow/underflow conditions increase WCET. Sharing the

HWDS among tasks also increases the response time. The following response time analysis

evolves a standard response time analysis [11] to include variables that affect WCET when

using a HWDS. This analysis only considers periodic tasks.

6.2.1 Notation

• τ : the set of all tasks

• Ti: the i’th task

65

• pi: period of Ti

• ei: the WCET of Ti.

• ci: the maximum context switch latency of Ti

Usually ci is equal for all tasks and is included twice in ei: once for the task preempted by

Ti and once for resuming that task.

6.2.2 Standard response time analysis

The response time Ri of Ti is the minimum value of t satisfying

t = ei +

i−1∑

k=1

⌈
t

pk

⌉
ek. (6.1)

Equation 6.1 considers the WCET of Ti plus the sum of processor time of higher priority

tasks overlapping with the time interval t. Ri is found by solving the recurrence

t(l+1) = ei +
i−1∑

k=1

⌈
t(l)

pk

⌉
ek

starting with t(0) = ei. τ is schedulable if Ri < pi for all Ti ∈ τ .

6.2.3 Response time analysis with HWDSs

Adding HWDSs splits the periodic tasks into two sets

• τ̂ : the set of tasks using a HWDS

• τ̃ : the set of tasks not using a HWDS

so τ = τ̂ ∪ τ̃ . HWDS assignment is the problem of choosing whether to place Ti in τ̂ or in

τ̃ for every i.

66

Task response times depend on HWDS assignment. Each task’s WCET is now

ei =

êi + x̂i + ĉi + max
j>i

ĉj if Ti ∈ τ̂

ẽi otherwise

where

• êi is the WCET of Ti when the HWDS replaces DS operations

• x̂i is the cost of exceptions taken due to using a HWDS

• ĉi is the maximum cost to context switch the HWDS for Ti

• ẽi is the WCET of Ti using a software-only DS

x̂i depends primarily on how many DS operations can cause exceptions during pi (i.e.

during any job of Ti) and the time needed to handle the exceptions: because x̂i depends

on the HWDS implementation no generic formula exists for ei.

êi depends on ĉj for j > i, that is the maximum time needed to empty and fill the

HWDS of a lower priority task. Preempting a lower priority task j empties j’s HWDS and

fills i’s, whereas resuming j empties i’s HWDS and fills j’s.

Equation 6.1 still gives Ri but now ei depends on whether Ti ∈ τ̂ or not; that is, on

the assignment algorithm. Assignment for just one task depends on whether

ẽi > êi + x̂i.

Assuming that x̂i is bounded then finding the Ti that maximizes

ẽi − (êi + x̂i)

gives the task that will benefit most from using the HWDS.

67

Including multiple tasks that share the HWDS complicates the assignment problem. In

particular ĉi varies depending on the cost of emptying and filling the HWDS (i.e. a context

switch), so—unlike with traditional response time analysis—a low priority task can affect

the response time of higher priority tasks. Conversely higher priority tasks already affect

the response time of lower priority tasks. So putting any Ti into τ̂ necessitates checking

whether it negatively affects the rest of the tasks already in τ̂ in order to find an optimal

assignment (see Section 6.3).

6.2.4 Response time analysis with a priority queue HWDS

When using a priority queue HWDS, the costs of x̂i and ĉi are upper-bounded as follows.

Let Ŝ be the size of the HWDS. Tuning the number of nodes that the overflow (under-

flow) exception handler spills (fills) to be w < Ŝ/2 guarantees that at most one overflow

(underflow) exception will occur for every w priority queue operations (enqueues or de-

queues). Let Oi be the maximum number of operations that can occur for any job of Ti,

and let A(w) be the WCET of the overflow (underflow) algorithm to handle w nodes. Then

x̂i < A(w) ∗ ⌈Oi/w⌉. (6.2)

When the context switch invokes the overflow routines to empty the HWDS and the

underflow routines to fill it, then the bound on ĉi depends on how much of the HWDS Ti

uses. Let ŝi <= Ŝ be the maximum usage of the HWDS by Ti. Then

ĉi < A(ŝi) ∗ ŝi. (6.3)

For example, if Ni is the maximum size of the priority queue (i.e. maximum number of

overflow nodes) then a binary heap implementation of the overflow nodes will have A(w) ≈

68

w ∗ log2 Ni (approximating the WCET of the heap by its asymptotic behavior). Then x̂i

and ĉi come directly from Equations 6.2 and 6.3 respectively. In Section 6.4, Software and

hardware implementations of priority queues are measured for the WCET of their enqueue

and dequeue operations and—for HWDSs—save-context, restore-context, spill, and

fill. I evaluate HWDS assignment algorithms with those measurements.

6.3 HWDS Assignment for Real-time Systems

I use terminology from scheduling to describe HWDS assignment for real-time systems—

indeed the assignment problem is similar to the problem of task scheduling. An assignment

is feasible if a solution to Equation 6.1 can be found for every task (equivalent to finding

a feasible schedule). If an assignment algorithm exists that produces a feasible assignment

for a set of tasks, then those tasks are schedulable. An assignment algorithm is optimal if

it always produces a feasible assignment for a set of tasks when one exists.

I evaluate four assignment algorithms for HWDSs: software-only assignment (SOA),

hardware-only assignment (HOA), priority-aware assignment (PAA), and context switch

cost-aware assignment (CSCAA). The first two algorithms are näıve and represent two

extremes, and the latter two are greedy algorithms employing different heuristics to make

choices about when to use a HWDS. None of these algorithms is optimal, and the PAA

and CSCAA algorithms do not permit tasks to change their priorities.

Some aspects of these algorithms are dependent on data structure behavior in particular

on the WCET of HWDS operations, exceptions, and context switches. A priority queue

HWDS has a bounded WCET if the maximum priority queue size, maximum number

of operations per period, and the HWDS size are bounded. In general these algorithms

will work for any HWDS that has bounded WCET based on the data structure size and

operations. If a HWDS requires more information to bound its WCET, then new algorithms

69

may be required. Future work should evaluate the difficulty of HWDS assignment and

whether efficient

The SOA algorithm simply assigns every task to use a software-implemented DS: the

SOA algorithm ignores the HWDS.

The HOA algorithm assigns every task to use the largest possible HWDS. Usually the

largest available HWDS gives the best performance out of all the available HWDS sizes,

but not always. As the usage of the HWDS increases, the rate of exceptions should go

down assuming that the work done during the exception handler increases. However the

latency of the exception handlers will increase, and so will the HWDS context switch

due to needing to move more data. For small numbers of operations per period, the

larger HWDSs underperform smaller HWDSs; at small counts of data structure operations

software typically performs better than any HWDS.

The PAA algorithm (Algorithm 1) iterates through tasks from the lowest priority to

the highest priority choosing at each task whether to use the HWDS by comparing the

WCET of the software implementation with the WCET of the HWDS. This algorithm

tracks the maximum HWDS context switch of the tasks that it has assigned to the HWDS

so that it can compute the WCET accurately taking into account the context switch costs

of lower-priority tasks. Iterating from low to high priorities allows the algorithm to move

in one direction. The reason that this algorithm is not optimal is that higher-priority tasks

that use the HWDS have a WCET that depends on whether (and which) lower-priority

tasks use the HWDS. Because the algorithm only moves in one direction, it does not allow

for re-evaluating the assignment of lower-priority tasks, and therefore can miss feasible

assignments.

CSCAA (Algorithm 2) is similar to PAA except for the cost heuristic that gets added

to the HWDS WCET. The cost heuristic penalizes low-priority tasks for using the HWDS.

70

Algorithm 1: Priority-Aware Assignment (PAA)
Input: n: number of tasks, τ : task set, N : max DS sizes, O: max DS operations, S: max HWDS size

1 bτ = ∅

2 eτ = ∅

3 ccm = 0
4 for i from n to 0 do

5 bei = get hwds wcet (Ni,Oi,S,ccm)

6 Ŝi = S

7 for s < S do

8 bei = get hwds wcet (Ni,Oi,s,ccm)
9 if e < bei then

10 bei = e

11 Si = s

12 end

13 end

14 eei = get swds wcet (Ni,Oi)
15 if bei < eei then

16 add to set (bτ , Ti)
17 if bci > ccm then

18 ccm = bci

19 else

20 add to set (eτ , Ti)

21 end

22 return bτ ,eτ

This heuristic tries to offset the effect of lower-priority tasks on higher-priority tasks. In

particular, the WCET of high-priority tasks affects low-priority task response times, so

reducing high-priority task WCETs should benefit response times for a set of tasks. Of

course, the penalty may prevent low-priority tasks from using the HWDS when they could

(and should), so this algorithm can miss feasible assignments. The cost heuristic can be

any function that gives a penalty to a task that—if it uses the HWDS—would increase

the maximum HWDS context switch time compared to tasks with a lower priority. For

this work, I used a cost heuristic that multiplies the amount a task will increase the

maximum HWDS context switch latency times the number of tasks with a higher priority:

In Algorithm 2 the function get cost returns (ci − cm) ∗ (n− i) or 0, whichever is greater.

71

Algorithm 2: Context Switch Cost-Aware Assignment (CSCAA)
Input: n: number of tasks, τ : task set, N : max DS sizes, O: max DS operations, S: max HWDS size

1 bτ = ∅

2 eτ = ∅

3 ccm = 0
4 for i from n to 0 do

5 bei = get hwds wcet (Ni,Oi,S,ccm)

6 bSi = S

7 for s < S do

8 e = get hwds wcet (Ni,Oi,s,ccm)
9 if e < bei then

10 bei = e

11 Si = s

12 end

13 end

14 eei = get swds wcet (Ni,Oi)
15 if bei + get cost (i,n,Si,ccm) ¡ eei then

16 add to set (bτ , Ti)
17 if bci > ccm then

18 ccm = bci

19 else

20 add to set (eτ , Ti)

21 end

22 return bτ ,eτ

6.4 Experiments

I conducted a series of experiments to evaluate HWDSs in the context of hard real-time

systems. These experiments use a priority queue HWDS, synthetic task sets to explore

the parameter space of the HWDS as the parameters relate to WCET, and workloads that

approximate real-world applications. Experiments are conducted using the experimental

infrastructure described in Section 3.3.

I measured values for WCET parameters that underlie all of the following experiments.

To estimate the WCET of priority queue operations I implemented an implicit binary heap

as a representative software priority queue. I designed a series of measurement tests that

build a priority queue up to a specified size, and then measure the cost of an operation

at that size. Five specific events are measured in isolation: enqueue, dequeue, overflow

72

exception, underflow exception, and HWDS context switch. The latter three are only rele-

vant and measured for a HWDS. All caching is disabled to obtain the WCET of these five

events. Although these measurements are pessimistic, the lack of a time-predictable cache

is problematic. As a result, memory access latency dominates the WCET measurements.

To force the worst-case conditions for the software priority queue, measure an enqueue

of a node with priority less than the highest-priority node in the heap so that the enqueue

must move the new node to the top of the heap resulting in a maximum number of swaps

(equal to the log base-2 of the priority queue size). A dequeue of the minimum value causes

a maximum amount of work in a heap.

For the HWDS enqueue and dequeue WCET, the HWDS must be in a state that will

not cause an exception. Before measuring enqueue, ensure the HWDS has enough spare

capacity to accept the new node, and before measuring dequeue ensure at least one valid

node is at the head of the queue. To generate the WCET overflow, the nodes that get

spilled must cause the spill algorithm to do maximum work. Using the united HWDS

described in Section 4.2, spilling iterates from the tail of the linked list to the head (which

has highest priority); to cause the WCET overflow, empty the HWDS and then fill it with

new nodes that have priority less than the head of the overflow linked list, thus ensuring

that the spill algorithm iterates through the entire linked list before completing.

The underflow handler has a special condition under which it has to spill nodes; when

the HWDS is full of marked nodes, it must fill from the spilled nodes and also spill some

of its marked nodes. The worst-case condition of an underflow is generated by enqueueing

nodes with priority less than the head of the spilled nodes (as with the overflow case),

marked all nodes in the HWDS, and then issued a dequeue. The dequeue causes an

underflow, and the exception handler finds that no capacity exists to fill, so it spills nodes.

The spills will take maximum time because the handler spills nodes with higher priority

73

than the nodes already in the spill data structure. The underflow handler eventually fills

the HWDS.

To cause the WCET of the HWDS context switch, fill the HWDS to its maximum

size using two separate data structures while ensuring the HWDS contains nodes with

priority less than the head of the spilled nodes. Then cause a HWDS context switch by

issuing an operation for the priority queue that is not currently in the HWDS context. The

context switch handler spills all of the nodes in the HWDS, which (because of the ordering

of nodes) takes maximum time, and then fills the HWDS with nodes from the requested

priority queue’s overflow data structure.

6.4.1 Schedulability

I designed a series of experiments using synthetic task sets to characterize the HWDS

parameter space and evaluate the HWDS assignment algorithms A task set is started

by creating a set of n tasks choosing integer task periods pi uniformly from [1, 1000].

Choose task utilizations ui uniformly at random from [0.001, 1) implicitly selecting task

execution times ei. After assigning all n tasks a utilization, normalize each ui so that

∑n
i=0 ui = U , where U is some target utilization value. This method of generating tasks

provides a variety of task sets while controlling the number of tasks and the task set

utilization. Use response time analysis (Equation 6.1) to ensure the generated task set is

schedulable, and regenerate any sets that fail the schedulability test. Then modify each

generated task set to include priority queue operations parametrized by a max priority

queue size, max HWDS size, priority queue implementation, and number of operations

to complete in a period. Using the task’s period and utilization, calculate compute time

and add the WCET determined by the priority queue parameters. Priority queue size and

implementation determine the WCET for any operation, and the priority queue size with

74

the number of operations determines the WCET for the HWDS exceptions. The HWDS

and priority queue sizes determine the WCET for the HWDS context switch.

The parameters of max priority queue size, priority queue implementation, and number

of operations are varied in a controlled way. For each particular assignment of parameters,

generate 10000 task sets and attempted to assign priority queue usage for each task set

using all four of the algorithms (SOA, HOA, PAA, and CSCAA) presented in Section 6.3.

For each task set and assignment algorithm, determine whether the task set is schedulable

after priority queue assignment. For these experiments, I set the max HWDS size at 1024

and let PAA and CSCAA choose to limit individual tasks to a smaller size; in practice

these algorithms typically—but not always—use the largest possible HWDS size.

Percent Schedulable with 90.0% Threshold
Utilization: 0.6, Tasks: 8, Max HWPQ Size: 1024

16
32
64

128
256
512

1024
2048
4096
8192

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

P
Q

 S
iz

e

PQ Ops per Period

Software-Only

S
ch

ed
u
la

b
le

 (
0
-1

0
0
%

)

16
32
64

128
256
512

1024
2048
4096
8192

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

P
Q

 S
iz

e

PQ Ops per Period

Hardware-Only

S
ch

ed
u
la

b
le

 (
0
-1

0
0
%

)

16
32
64

128
256
512

1024
2048
4096
8192

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

P
Q

 S
iz

e

PQ Ops per Period

Priority-Aware

S
ch

ed
u
la

b
le

 (
0
-1

0
0
%

)

16
32
64

128
256
512

1024
2048
4096
8192

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

P
Q

 S
iz

e

PQ Ops per Period

Context Switch Cost-Aware
S

ch
ed

u
la

b
le

 (
0
-1

0
0
%

)

Figure 6-1: Schedulability of random task sets for utilization (without priority queue op-
erations) fixed at 0.6 and task set size at 8. Varying utilization and the number of tasks
moves the threshold lines, which are shown in later figures.

75

Figure 6-1 shows the results as both the max priority queue size and the number of

priority queue operations per period vary by powers of 2 from 16 to 8192. For this particular

figure, the task set utilization U is 0.6 and the number of tasks per task set to 8. The plot

shows the percent of task sets (out of 10000) that are schedulable after assignment for each

combination of priority queue size and number of priority queue operations. The threshold

line plot delineates an upper limit below which each combination feasibly schedules at

least 90% of its task sets. These results show how the different assignment algorithms

work, and in particular show that PAA dominates SOA and HOA for much of the explored

space. The threshold line also shows that differences exist between the schedulability of

task sets assigned using PAA versus CSCAA, with neither outperforming the other for all

parameters although CSCAA generally does better than PAA.

16

32

64

128

256

512

1024

2048

4096

8192

16 32 64 128 256 512 1024 2048 4096 8192

P
Q

 S
iz

e

PQ Ops per Period

Threshold for 90.0% Schedulability
Utilization: 0.4 Tasks: 8, Max HWPQ Size: 1024

SOA

HOA

PAA

CSCAA

(a) Schedulability with U = 0.4.

16

32

64

128

256

512

1024

2048

4096

8192

16 32 64 128 256 512 1024 2048 4096 8192

P
Q

 S
iz

e

PQ Ops per Period

Threshold for 90.0% Schedulability
Utilization: 0.8 Tasks: 8, Max HWPQ Size: 1024

SOA

HOA

PAA

CSCAA

(b) Schedulability with U = 0.8.

Figure 6-2: As utilization decreases (increases), threshold lines move up (down) because
applications have more (less) spare utilization to accommodate priority queue operations.

Figure 6-2a shows just the threshold lines this time for a task set utilization U at 0.4, and

again with the tasks fixed at 8; Figure 6-2b shows how increasing U affects schedulability

by measuring schedulability with U at 0.8 and with 8 tasks. When system utilization is

low the extra slack available in the system allows for priority queue operations to use more

76

time, which leads to more task sets being schedulable. In general, the threshold lines move

up indicating that for a given number of priority queue operations, the task sets having

priority queue sizes twice as large are schedulable over 90% of the time with the extra 20%

available CPU time.

16

32

64

128

256

512

1024

2048

4096

8192

16 32 64 128 256 512 1024 2048 4096 8192

P
Q

 S
iz

e

PQ Ops per Period

Threshold for 90.0% Schedulability
Utilization: 0.6 Tasks: 4, Max HWPQ Size: 1024

SOA

HOA

PAA

CSCAA

(a) Schedulability with 4 tasks.

16

32

64

128

256

512

1024

2048

4096

8192

16 32 64 128 256 512 1024 2048 4096 8192
P

Q
 S

iz
e

PQ Ops per Period

Threshold for 90.0% Schedulability
Utilization: 0.6 Tasks: 16, Max HWPQ Size: 1024

SOA

HOA

PAA

CSCAA

(b) Schedulability with 16 tasks

Figure 6-3: As the number of tasks decreases (increases), the threshold lines move up
(down). Halving (Doubling) the number of tasks more than doubles (halves) the number
of schedulable task sets.

Figure 6-3a again shows the threshold lines, this time with U at 0.6 and with 4 tasks;

Figure 6-3b shows how increasing the number of tasks with fixed U affects schedulability

by keeping U at 0.6 and increasing the number of tasks to 16. The extra tasks increase

the global number of priority queue operations (since every task does the same workload).

Doubling the tasks has the effect of reducing by a factor of two the priority queue sizes of

tasks sets that are schedulable at least 90% of the time for a given number of operations

(two factors if compared to half as many tasks and 20% more CPU time).

6.4.2 Real-world Applications

The synthetic task sets demonstrate priority queue HWDSs with the PAA and CSCAA

algorithms can decrease utilization hence increase schedulability of applications that use

77

priority queues. This section shows how HWDSs might benefit real-world applications,

which may not exhibit behavior that is similar to the synthetic task sets. Two important

application domains in real-time and embedded systems are navigation and terrain map-

ping. Both of these domains contain applications that use a priority queue as a central

data structure in their main algorithms. From the navigation domain, I use a version of

Dijkstra’s algorithm that is executed on real-world maps taken from the DIMACS shortest

path implementation challenge benchmarks [26]. From the terrain mapping domain, I use

an implementation of the grey-weighted distance transform that executes on a random 3D

image; this application has been used previously to evaluate a variety of software priority

queues [82]. I call these applications GPS and GWDT respectively. Both applications and

their inputs are available online, see [82, 26].

In order to simulate these real-world applications, I measured their behavior with re-

spect to PQ parameters that affect HWDS WCET. These measurements are the same as

those used in Section 4.3.2, where the methodology for taking measurements is explained

for the GPS application. Table 6-1 summarizes the measurements. For the GWDT appli-

cation, I included the peek, enqueue, and dequeue operations with priority queue memory

management; the software priority used for the measurements was the 4-heap [82].

Using the parameters measured from running the applications, I modeled two new

applications that simultaneously run x numbers of small (32 pixel) GWDT tasks, y numbers

of local GPS search tasks, 1 large (64 pixel) image processing task, 1 regional GPS search

task, and 1 long-distance GPS search task. One application lets x vary from 0 through

12 with y fixed at 1 (call it the GWDT application), and the other application lets y vary

from 0 through 12 with x fixed at 1 (call it the GPS application). The total number of

tasks in either application varies from 4 to 16.

For each application at a given number of tasks, 10000 random task sets are generated

78

Table 6-1: Priority queue behavior in real-world applications.

App. Input Priority Queue Size Operations Time

GWDT
32 pixels 16303 168840 31.4%
64 pixels 56447 1353326 33.5%

GPS

NYC 925 528693 28.5%
S.F. BAY 886 642540 27.1%
Colorado 945 871332 30.1%
Florida 1413 2140753 28.4%
NW US 1723 2415891 29.2%
NE US 1796 3048907 26.7%
California 2355 3781631 27.4%
Great Lakes 1810 5516239 27.9%
Eastern US 2336 7197247 24.6%
Western US 4281 12524209 24.3%
Central US 5086 28163632 22.4%

with the utilization drawn randomly as before (uniform in [0.001, 1] then normalized to

a target U after all tasks have a utilization), but now with the period determined by

the measured priority queue parameters. In particular, the WCET of a software priority

queue is determined (using measurements from the implicit binary heap) for the maximum

priority queue size and number of priority queue operations for the task, and uses the

percent of time the task should spend on the priority queue to determine how long its total

compute time should be. Then the task’s period is computed by dividing its total compute

time by its randomly generated utilization. Any task set that does not pass the response

time analysis is regenerated.

The result of task set generation is a set of tasks that use a software priority queue and

whose task set has a utilization equal to a known value U . The software priority queue

WCETs is then removed from the tasks and run each assignment algorithm (SOA, HOA,

PAA, and CSCAA) on the task set. The SOA algorithm will result in a schedulable task set

with a utilization equal to U . Instead of using schedulability as the metric for performance

in these experiments, the amount the assignment algorithm improves (or degrades) task set

79

utilization is used; an improvement in utilization is a positive number, so larger is better,

and negative numbers indicate that the assignment algorithm does worse than SOA.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 2 4 6 8 10 12 14 16

U
ti

li
za

ti
o
n
 I

m
p
ro

v
em

en
t

Number of Tasks

Difference in Utilization from SOA (0.7) for New York City
Max HWPQ Size 1024

HOA GPS
CSCAA GPS

(a) Utilization improvements for GPS.

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 2 4 6 8 10 12 14 16

U
ti

li
za

ti
o
n
 I

m
p
ro

v
em

en
t

Number of Tasks

Difference in Utilization from SOA (0.7) for New York City
Max HWPQ Size 1024

HOA GWDT
CSCAA GWDT

(b) Utilization improvements for GWDT.

Figure 6-4: Utilization improvements with increasing numbers of tasks executing local
search in NYC or small input for GPS and GWDT applications respectively.

Figure 6-4a shows how HOA and CSCAA improve utilization over SOA for the ap-

plication that varies the number of tasks running a local GPS search; each point is the

arithmetic mean of the difference between the utilization of SOA—fixed at 0.7—and one

of the assignment algorithms (either HOA and CSCAA) averaged across 10000 trials, and

with error bars showing the sample standard deviation in both directions (one standard

deviation up and one down). The local GPS search is executing the benchmark challenge

for New York City, with the regional and long-range searches executing the northeastern

US and eastern US benchmarks respectively. Figure 6-4b shows the same measurements

but taken as the number of tasks running the small (32 pixels) GWDT (32 pixels) in-

creases. The results for PAA are not shown because they overlap closely with those for

CSCAA. The gains for the GPS application are around 10–16% utilization which represents

an improvement of 14–22% over the software PQ utilization.

The real-world applications demonstrate some interesting results. First is that just

80

using a HWDS (HOA) yields large swings in utilization; the smallest GWDT task has

a standard deviation of around 7% utilization. Second is that for some applications the

benefit of using HWDS may actually increase as the number of tasks increases; conversely

the benefits may decrease, as shown by the GWDT results. Even so, the CSCAA algorithm

produces useful HWDS assignments in these real-world task sets and improves task set

utilization, which enables real-time developers to schedule more hard real-time tasks. The

extra utilization also could be useful for admission control of sporadic and aperiodic tasks.

6.5 Summary

This chapter demonstrated that HWDSs can benefit real-time systems by reducing WCETs

even when data structure sizes exceed the size of the HWDS. Systems software support

provides flexibility to remove size and sharing limitations of hardware so that applications

can benefit from using HWDSs. I devised two new algorithms that assign tasks to use either

a HWDS or a software-implemented data structure, and experimental results show those

algorithms outperform just using the software or just using the HWDS for much of the

explored application and parameter space. A priority queue HWDS shows how real-world

applications for navigation and image processing could obtain practical improvements in

the range of 5–15% of total utilization using the intelligent approaches to overflow handling

and HWDS assignment proposed in this thesis.

81

Chapter 7 – Future Work and Conclusion

Before I conclude my dissertation thesis, this chapter identifies some of the possible direc-

tions for future work.

7.1 Policies for Accessing Memory

Decades of research on caching has explored policies to improve performance: penalty-

reducing algorithms like critical-word first, early restart, read prioritization, and write

merging; miss-reducing techniques like hit under miss, hardware prefetching, and cache

pinning; reducing access latency with virtual addressing, cache sizing, and pipelining; and

eviction algorithms like LRU, least frequently used, and victim caching. Parallels to these

improvements may exist for HWDSs, since they too provide an interface to memory. The

solutions likely differ, because—as demonstrated by the overflow handling for the prior-

ity queue united HWDS—overflow data structure implementation may affect policy and

algorithm performance.

7.2 HWDS Assignment

This thesis shows that assignment algorithms make a difference. Better algorithms, both

static (offline) and dynamic (online), certainly exist for HWDS assignment, and evaluating

their complexity and effectiveness is a promising avenue for future research. An important

open question related to HWDS assignment is what size HWDS should a data structure of

a given size be assigned.

82

7.3 Data Sharing

Nothing prevents tasks from sharing a HWDS with the same data structure. However such

sharing imposes two new requirements on the HWDS: synchronization and protection. The

synchronization and protection of shared data are well-studied problems. Synchronization

is solved with mechanisms such as locking and TM. Protection is provided by OS support

for private address spaces and shareable regions within those spaces; for example, shared

pages in a page-based VMA space. This thesis supports only task-private data structures,

so synchronization is not a problem, and protection is implicit.

HWDSs may prove beneficial for data sharing, because the hardware could implement

its own synchronization primitives. Protection does not seem problematic, because task

context can include HWDS context, in which case the OS only needs know which HWDS

contexts a task may access. A deeper study of data sharing is needed to test these hy-

potheses, but the idea seems promising.

7.4 OS Optimizations for HWDSs

HWDS exceptions and hardware performance counters offer new knowledge about data

structure usage that the OS might use advantageously. Some optimizations to investigate

include deferring exception handlers, lazy HWDS context switching, co-scheduling tasks

that share a data structure, avoiding preemption for a minimum time after a HWDS context

switch, pinning data structures to the HWDS for high priority tasks, prefetching HWDS

context for tasks near the front of the scheduler’s ready queue, and using the overflow data

structure when it is already in cache. All of these optimizations have potential to improve

the performance of multitasking systems using HWDSs.

83

7.5 Integration with Programming Languages and Libraries

From a programmer’s perspective, libraries—like STL—and the OS could use HWDSs

independent of applications to replace the use of data structures. Compilers can play a role

in effective HWDS use as well. Code generation and optimization for HWDS instructions

is an open area of research.

Object-oriented languages support abstractions and libraries for the data structures and

operations used throughout this thesis: the C++ STL provides priority queue and map

containers—a container is the STL equivalent of an abstract data type. STL containers

implement data structure operations as member functions of the container template class.

Some of these functions already are supported by HWDSs to a limited extent—for example

insert, erase, find, begin, push front, and pop front. Other functions can be provided with

trivial hardware modifications, for example hardware counters can implement functions

related to capacity such as size, max size, and empty. The difficulty in providing the

remaining functions is that either the hardware support is non-trivial or the nodes’ values

must be accessed, which requires knowledge about the object layout. Also unclear is how

to handle iterators, which permit applications to retain handles to the container. Is the gap

between the HWDS interface and common library interfaces such as the STL bridgeable?

Is a light-weight portability interface that can span multiple languages and libraries to

support HWDSs a feasible and practical solution for widespread deployment? Do software

library interfaces reduce or increase the appeal of the HWDS as an abstraction layer?

These questions open new directions to explore library and language support for HWDSs.

Appendix A describes some initial steps along those directions.

84

7.6 Hardware Improvements

This thesis focuses on the OS side of the hardware-software interface of HWDSs, and

how software improvements along this interface help applications to use HWDSs better.

Investigations along the hardware side of the interface may yield benefits for applications

as well; this section identifies possible directions to investigate.

7.6.1 Other HWDSs

The most obvious hardware improvement is support for more data structures. What other

data structures are amenable to HWDS implementation? Kim [67] identifies the sparse

vector and hash table as possibilities for abstract datatype processors, which are closely

related to HWDSs. Graphs [85, 41] and trees [117] have been implemented using RC

co-processors.

7.6.2 Improved processor pipeline support

This thesis uses a HWDS functional unit that operates atomically and non-speculatively.

Since the rate of HWDS instructions usually is slow, these restrictions are not oppressive.

However, some heavy uses of HWDSs could be more efficient if the functional unit were able

to operate in parallel and speculatively with the rest of the pipeline, and if the functional

unit itself could be pipelined. An example of such a use is in overflow handling and context

switching, which execute repeated spill or fill instructions.

7.6.3 HWDS support for instructions

The HWDSs presented in this thesis implement the spill and fill instructions with

combinations of other instructions, real and imagined. What if the HWDS supported spill

and fill natively? The complexity of OS management would lessen, since the interface to

85

the HWDS would be cleaner, albeit slightly larger. More important, the hardware would

be responsible for providing the most efficient mechanisms for getting data in and out.

One step further, perhaps the hardware can implement spill and fill to access memory

directly. Then the processor can be freed to do other work until the HWDS is finished.

Such support would permit HWDS events such as context switching and overflow handling

to work asynchronously and hide much of the overhead induced by those events.

Another intriguing possibility for HWDS instructions is for the hardware to convert

failover operations directly into overflow data structure operations. Such conversion would

permit failover to happen asynchronously, permitting the processor or HWDS to do other

work. Such a hardware improvement is reminiscent of stored microprograms [75, 86] and

instruction fusion [29].

Yet another mechanism for efficient filling would be to use the idea of paired operations

proposed by Leiserson [77]. An example of a paired operation is a [dequeue, enqueue]; when

overflow exists, a dequeue can be paired implicitly with an enqueue from the overflow

nodes. In a priority queue that only reads from the head of the queue, such a paired

operation has the potential to eliminate underflow.

7.6.4 Prefetching

Prefetching is known to decrease (and sometimes increase) cache miss rates. The structural

locality embedded in a HWDS seems perfect for implementing a linked prefetcher. The

HWDSs used in this thesis only store key-value pairs; in practice, values are likely pointers

to structured data that an application uses. Prefetch logic could load the data pointed

to by the values for nodes in the HWDS. Evaluations for prefetching support necessarily

must consider the cost of prefetching, which is increased memory bus pressure and the

possibility of increased miss rates due to cache evictions caused by prefetched cache lines.

86

7.6.5 Multicore considerations

This thesis considered the integration of HWDSs in a uniprocessor computer architecture.

Modern systems increasingly rely on multiprocessing, in particular chip multicore multi-

processing, which warrants further investigations into how HWDSs should be accessed by

hardware. Similar problems as caching—coherency, scalability, sharing, and hierarchy—

may appear in such investigations. The combination of data sharing and multicore is

appealing to study with HWDSs; multicore processors increase contention on shared data,

and if a HWDS can manage contention better than alternatives such as locking and TM,

then the HWDS may have an even greater benefit to multicore than to single core com-

puters. Multicore warrants further study of HWDSs.

7.7 Conclusion

This thesis ponders: How should computers access memory? Since memory latency im-

proves slower than bandwidth, which improves slower than processor speed, memory ac-

cesses hamper computer system performance. Although caching alleviates some of the

latency problems, when the cache inevitably misses, performance suffers. Instead of oper-

ating in terms of memory (cache) accesses, this thesis argues that computer architecture

and operating systems cooperate to support programming with data structure operations,

the common coin of modern programming languages.

87

Bibliography

[1] Trees II: red-black trees [LWN.net]. http://lwn.net/Articles/184495/, 2006.

[2] Boost c++ libraries. http://www.boost.org/, 2012.

[3] FlightGear. http://www.flightgear.org/, 2012.

[4] Geant4: A toolkit for the simulation of the passage of particles through matter.

http://geant4.cern.ch/, 2012.

[5] gem5. http://www.m5sim.org/Main Page, 2012.

[6] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: programming model,

algorithms and evaluation. SIGPLAN Not., 33(11):8191, October 1998.

[7] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy bounds

checking: an efficient and backwards-compatible defense against out-of-bounds errors.

In Proceedings of the 18th conference on USENIX security symposium, SSYM’09,

page 5166, Berkeley, CA, USA, 2009. USENIX Association.

[8] Ghiath Al-Kadi and Andrei Terechko. A hardware task scheduler for embedded video

processing. In High Performance Embedded Architectures and Compilers, pages 140–

152. 2009.

[9] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand,

R. Capra, S. Chauvie, R. Chytracek, G.A.P. Cirrone, G. Cooperman, G. Cosmo,

G. Cuttone, G.G. Daquino, M. Donszelmann, M. Dressel, G. Folger, F. Foppiano,

J. Generowicz, V. Grichine, S. Guatelli, P. Gumplinger, A. Heikkinen, I. Hrivna-

cova, A. Howard, S. Incerti, V. Ivanchenko, T. Johnson, F. Jones, T. Koi, R. Kok-

oulin, M. Kossov, H. Kurashige, V. Lara, S. Larsson, F. Lei, O. Link, F. Longo,

88

M. Maire, A. Mantero, B. Mascialino, I. McLaren, P.M. Lorenzo, K. Minamimoto,

K. Murakami, P. Nieminen, L. Pandola, S. Parlati, L. Peralta, J. Perl, A. Pfeif-

fer, M.G. Pia, A. Ribon, P. Rodrigues, G. Russo, S. Sadilov, G. Santin, T. Sasaki,

D. Smith, N. Starkov, S. Tanaka, E. Tcherniaev, B. Tome, A. Trindade, P. Truscott,

L. Urban, M. Verderi, A. Walkden, J.P. Wellisch, D.C. Williams, D. Wright, and

H. Yoshida. Geant4 developments and applications. IEEE Transactions on Nuclear

Science, 53(1):270 –278, February 2006.

[10] Gene M Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer

conference, AFIPS ’67 (Spring), page 483485, New York, NY, USA, 1967. ACM. ACM

ID: 1465560.

[11] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. Applying new

scheduling theory to static priority pre-emptive scheduling. Software Engineering

Journal, 8(5):284 –292, September 1993.

[12] G. J. Battarel and R. J. Chevance. Design of a high level language machine.

SIGARCH Comput. Archit. News, 6(9):5–17, 1978.

[13] Jim Bell and Gopal Gupta. An evaluation of selfadjusting binary search tree tech-

niques. Software: Practice and Experience, 23(4):369–382, April 1993.

[14] R. Bhagwan and B. Lin. Fast and scalable priority queue architecture for high-speed

network switches. In INFOCOM 2000. Nineteenth Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE, volume 2, pages

538–547 vol.2, 2000.

89

[15] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,

Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,

Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and

David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):17,

August 2011.

[16] Gedare Bloom, Gabriel Parmer, Bhagirath Narahari, and Rahul Simha. Real-time

scheduling with hardware data structures. In Work-in-Progress Session. IEEE Real-

Time Systems Symposium, December 2010.

[17] Gedare Bloom, Gabriel Parmer, Bhagirath Narahari, and Rahul Simha. Shared

hardware data structures for hard real-time systems. In Proceedings of the tenth

ACM international conference on Embedded software, EMSOFT ’12, page 133142,

New York, NY, USA, 2012. ACM.

[18] J. Bobba, N. Goyal, M.D. Hill, M.M. Swift, and D.A. Wood. TokenTM: efficient

execution of large transactions with hardware transactional memory. In 35th In-

ternational Symposium on Computer Architecture, 2008. ISCA ’08, pages 127 –138,

June 2008.

[19] Haran Boral and David J. DeWitt. Parallel architectures for database systems. page

1128. IEEE Press, Piscataway, NJ, USA, 1989.

[20] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans

Kaashoek, Robert Morris, and Nickolai Zeldovich. An analysis of linux scalability

to many cores. In Proceedings of the 9th USENIX conference on Operating systems

design and implementation, OSDI’10, page 18, Berkeley, CA, USA, 2010. USENIX

Association.

90

[21] Jay B. Brockman, Shyamkumar Thoziyoor, Shannon K. Kuntz, and Peter M. Kogge.

A low cost, multithreaded processing-in-memory system. In Proceedings of the 3rd

workshop on Memory performance issues: in conjunction with the 31st international

symposium on computer architecture, WMPI ’04, page 1622, New York, NY, USA,

2004. ACM.

[22] Gerth Stølting Brodal. Worst-case efficient priority queues. In Proceedings of the sev-

enth annual ACM-SIAM symposium on Discrete algorithms, SODA ’96, page 5258,

Atlanta, Georgia, United States, 1996. Society for Industrial and Applied Mathemat-

ics. ACM ID: 313883.

[23] Ioana Burcea, Livio Soares, and Andreas Moshovos. Pointy: a hybrid pointer

prefetcher for managed runtime systems. In Proceedings of the 21st international con-

ference on Parallel architectures and compilation techniques, PACT ’12, page 97106,

New York, NY, USA, 2012. ACM.

[24] Wayne Burleson, Jason Ko, Douglas Niehaus, Krithi Ramamritham, John A.

Stankovic, Gary Wallace, and Charles Weems. The spring scheduling coprocessor: a

scheduling accelerator. IEEE Trans. Very Large Scale Integr. Syst., 7(1):38–47, 1999.

[25] Robert D. Cameron and Dan Lin. Architectural support for SWAR text processing

with parallel bit streams: the inductive doubling principle. In Proceeding of the

14th international conference on Architectural support for programming languages

and operating systems, pages 337–348, Washington, DC, USA, 2009. ACM.

[26] Center for Discrete Mathematics & Theoretical Computer Sci-

ence. 9th DIMACS implementation challenge: Shortest paths.

http://www.dis.uniroma1.it/challenge9/download.shtml, 2012.

91

[27] R. Chandra and O. Sinnen. Improving application performance with hardware data

structures. In 2010 IEEE International Symposium on Parallel Distributed Process-

ing, Workshops and Phd Forum (IPDPSW), pages 1 –4, April 2010.

[28] Bernard Chazelle. The soft heap: an approximate priority queue with optimal error

rate. J. ACM, 47(6):10121027, November 2000. ACM ID: 355554.

[29] Allen C. Cheng. Amplifying embedded system efficiency via automatic instruction

fusion on a post-manufacturing reconfigurable architecture platform. In Quality Elec-

tronic Design, International Symposium on, pages 744–749, Los Alamitos, CA, USA,

2008. IEEE Computer Society.

[30] Y.H. Cho and W.H. Mangione-Smith. Deep packet filter with dedicated logic and

read only memories. In FCCM 2004, 2004.

[31] Slo-Li Chu and Tsung-Chuan Huang. SAGE: an automatic analyzing system for

a new high-performance SoC architecture-processor-in-memory. J. Syst. Archit.,

50(1):115, January 2004.

[32] Jaewoong Chung, Luke Yen, Stephan Diestelhorst, Martin Pohlack, Michael

Hohmuth, David Christie, and Dan Grossman. ASF: AMD64 extension for lock-free

data structures and transactional memory. In Proceedings of the 2010 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO ’43, page 3950,

Washington, DC, USA, 2010. IEEE Computer Society.

[33] Nathan Clark, Amir Hormati, and Scott Mahlke. VEAL: virtualized execution accel-

erator for loops. In ACM SIGARCH Computer Architecture News, ISCA ’08, page

389400, Washington, DC, USA, 2008. IEEE Computer Society. ACM ID: 1382155.

92

[34] Ellis Cohen and David Jefferson. Protection in the hydra operating system. SIGOPS

Oper. Syst. Rev., 9(5):141–160, 1975.

[35] Robert P. Colwell, Edward F. Gehringer, and E. Douglas Jensen. Performance effects

of architectural complexity in the intel 432. ACM Trans. Comput. Syst., 6(3):296339,

August 1988.

[36] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. A stateless, content-directed

data prefetching mechanism. SIGARCH Comput. Archit. News, 30(5):279290, Octo-

ber 2002.

[37] George W. Cox, William M. Corwin, Konrad K. Lai, and Fred J. Pollack. Interprocess

communication and processor dispatching on the intel 432. ACM Trans. Comput.

Syst., 1(1):4566, February 1983.

[38] Alberto R. Cunha, Carlos N. Ribeiro, and Jos A. Marques. The architecture of a

memory management unit for object-oriented systems. SIGARCH Comput. Archit.

News, 19(4):109116, July 1991.

[39] Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark Moir, Michael L.

Scott, and Michael F. Spear. Hybrid NOrec: a case study in the effectiveness of best

effort hardware transactional memory. SIGPLAN Not., 46(3):3952, March 2011.

[40] A. DeHon, J. Adams, M. DeLorimier, N. Kapre, Y. Matsuda, H. Naeimi, M. Vanier,

and M. Wrighton. Design patterns for reconfigurable computing. In Field-

Programmable Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE

Symposium on, pages 13 – 23, April 2004.

93

[41] Michael deLorimier, Nachiket Kapre, Nikil Mehta, Dominic Rizzo, Ian Eslick,

Raphael Rubin, Tomas E. Uribe, Thomas F. Jr Knight, and Andre DeHon. Graph-

Step: a system architecture for sparse-graph algorithms. In Proceedings of the

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,

page 143151, Washington, DC, USA, 2006. IEEE Computer Society. ACM ID:

1170448.

[42] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed

computations. Commun. ACM, 9(3):143–155, 1966.

[43] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early experience with a

commercial hardware transactional memory implementation. In Proceeding of the

14th international conference on Architectural support for programming languages

and operating systems, pages 157–168, Washington, DC, USA, 2009. ACM.

[44] Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett, Jeff LaCoss,

John Granacki, Jaewook Shin, Chun Chen, Chang Woo Kang, Ihn Kim, and Gokhan

Daglikoca. The architecture of the DIVA processing-in-memory chip. In Proceedings

of the 16th international conference on Supercomputing, ICS ’02, page 1425, New

York, NY, USA, 2002. ACM.

[45] E. Ebrahimi, O. Mutlu, and Y.N. Patt. Techniques for bandwidth-efficient prefetch-

ing of linked data structures in hybrid prefetching systems. In IEEE 15th Interna-

tional Symposium on High Performance Computer Architecture, 2009. HPCA 2009,

pages 7 –17, February 2009.

[46] Zhen Fang, Lixin Zhang, John B. Carter, Ali Ibrahim, and Michael A. Parker. Active

memory operations. In Proceedings of the 21st annual international conference on

Supercomputing, ICS ’07, page 232241, New York, NY, USA, 2007. ACM.

94

[47] Basilio B. Fraguela, Jose Renau, Paul Feautrier, David Padua, and Josep Torrellas.

Programming the FlexRAM parallel intelligent memory system. SIGPLAN Not.,

38(10):4960, June 2003.

[48] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan.

The pairing heap: A new form of self-adjusting heap. Algorithmica, 1(1-4):111–129,

November 1986.

[49] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in

improved network optimization algorithms. J. ACM, 34(3):596615, July 1987. ACM

ID: 28874.

[50] Free Software Foundation. The GNU c++ library.

http://gcc.gnu.org/onlinedocs/libstdc++/, 2012.

[51] Dan Gibson. Scalable Cores in Chip Multiprocessors. PhD thesis, University of

Wisconsin-Madison, 2010.

[52] Dan Gibson and David A Wood. Forwardflow: a scalable core for power-constrained

CMPs. In ACM SIGARCH Computer Architecture News, volume 38, page 1425, New

York, NY, USA, June 2010. ACM. ACM ID: 1815966.

[53] Haiku, Inc. Haiku project. http://www.haiku-os.org/, 2012.

[54] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support

for lock-free data structures. SIGARCH Comput. Archit. News, 21(2):289300, May

1993.

[55] Mark D Hill and Michael R Marty. Amdahl’s law in the multicore era. Computer,

41:3338, July 2008. ACM ID: 1449387.

95

[56] J Hoogerbrugge and A Terechko. A multithreaded multicore system for embedded

media processing. Transactions on High-Performance Embedded Architectures and

Compilers, 3(2), 2008.

[57] Christopher J. Hughes and Sarita V. Adve. Memory-side prefetching for linked

data structures for processor-in-memory systems. Journal of Parallel and Distributed

Computing, 65(4):448–463, April 2005.

[58] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F Martinez. Core fusion:

accommodating software diversity in chip multiprocessors. In ACM SIGARCH Com-

puter Architecture News, volume 35, page 186197, New York, NY, USA, June 2007.

ACM. ACM ID: 1250686.

[59] Prabhat Jain, G. Edward Suh, and Srinivas Devadas. Embedded intelligent SRAM.

In Proceedings of the 40th annual Design Automation Conference, DAC ’03, page

869874, New York, NY, USA, 2003. ACM.

[60] Weirong Jiang, Yi-Hua E. Yang, and Viktor K. Prasanna. Scalable multi-pipeline

architecture for high performance multi-pattern string matching. In 2010 IEEE In-

ternational Symposium on Parallel & Distributed Processing (IPDPS), pages 1–12,

Atlanta, GA, USA, 2010.

[61] Douglas W Jones. An empirical comparison of priority-queue and event-set imple-

mentations. Commun. ACM, 29(4):300311, April 1986. ACM ID: 5686.

[62] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. In Proceed-

ings of the 24th annual international symposium on Computer architecture, ISCA

’97, page 252263, New York, NY, USA, 1997. ACM.

96

[63] Y Kawanaka, S Wakabayashi, and S Nagayama. A systolic regular expression pattern

matching engine and its application to network intrusion detection. Taipei, 2008.

[64] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. A case for intelli-

gent disks (IDISKs). SIGMOD Rec., 27(3):4252, September 1998.

[65] Byung Kook Kim and K.G. Shin. Scalable hardware earliest-deadline-first scheduler

for ATM switching networks. In Real-Time Systems Symposium, IEEE International,

page 210, Los Alamitos, CA, USA, 1997. IEEE Computer Society.

[66] Changkyu Kim, Simha Sethumadhavan, M. S Govindan, Nitya Ranganathan, Divya

Gulati, Doug Burger, and Stephen W Keckler. Composable lightweight processors.

In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO 40, page 381394, Washington, DC, USA, 2007. IEEE Computer

Society. ACM ID: 1331733.

[67] Martha Kim. Stories, not words: Abstract datatype processors. In Workshop on

New Directions in Computer Architecture (NDCA), 2011.

[68] Donald E Knuth. The art of computer programming, volume 3: (2nd ed.) sorting

and searching. Addison Wesley Longman Publishing Co., Inc., 1998.

[69] Paul Kohout, Brinda Ganesh, and Bruce Jacob. Hardware support for real-time op-

erating systems. In Proceedings of the 1st IEEE/ACM/IFIP international conference

on Hardware/software codesign and system synthesis, pages 45–51, Newport Beach,

CA, USA, 2003. ACM.

[70] Christos Kozyrakis and David Patterson. Overcoming the limitations of conventional

vector processors. In ACM SIGARCH Computer Architecture News, volume 31, page

399409, New York, NY, USA, May 2003. ACM. ACM ID: 859664.

97

[71] Pramote Kuacharoen, Mohamed A Shalan, and Vincent J. Mooney III. A config-

urable hardware scheduler for real-time systems. In Proceedings of the International

Conference on Engineering of Reconfigurable Systems and Algorithms, pages 96—101,

2003.

[72] Chetan Kumar, Sudhanshu Vyas, Jonathan Shidal, Ron Cytron, Christopher Gill,

Joseph Zambreno, and Phillip Jones. Improving system predictability and perfor-

mance via hardware accelerated data structures, 2012.

[73] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. Carbon: architectural

support for fine-grained parallelism on chip multiprocessors. In Proceedings of the

34th annual international symposium on Computer architecture, pages 162–173, San

Diego, California, USA, 2007. ACM.

[74] Anthony LaMarca and Richard Ladner. The influence of caches on the performance

of heaps. J. Exp. Algorithmics, 1, January 1996. ACM ID: 235145.

[75] James R Larus. A comparison of microcode, assembly code, and high-level languages

on the VAX-11 and RISC i. ACM SIGARCH Computer Architecture News, 10:1015,

September 1982. ACM ID: 641561.

[76] Sanghoon Lee, Davesh Tiwari, Yan Solihin, and James Tuck. HAQu: hardware

accelerated queueing for fine-grained threading on a chip multiprocessor. In Pro-

ceedings of the 17th IEEE International Symposium on High Performance Computer

Architecture, 2011.

[77] Charles E. Leiserson. Systolic priority queues. In Proceedings of the Caltech Confer-

ence on Very Large Scale Integration, pages 199–214, Pasadena, CA, January 1979.

[78] Henry M. Levy. Capability-Based Computer Systems. Butterworth-Heinemann, 1984.

98

[79] Chyuan Shiun Lin, Diane C. P. Smith, and John Miles Smith. The design of a rotating

associative memory for relational database applications. ACM Trans. Database Syst.,

1(1):5365, March 1976.

[80] Lixia Liu and Silvius Rus. Perflint: A context sensitive performance advisor for c++

programs. In Proceedings of the 7th annual IEEE/ACM International Symposium on

Code Generation and Optimization, CGO ’09, page 265274, Washington, DC, USA,

2009. IEEE Computer Society.

[81] J. Loew, J. Elwell, D. Ponomarev, and P.H. Madden. A co-processor approach for

accelerating data-structure intensive algorithms. In Computer Design (ICCD), 2010

IEEE International Conference on, pages 431–438, 2010.

[82] Cris L Luengo Hendriks. Revisiting priority queues for image analysis. Pattern

Recogn., 43(9):30033012, September 2010. ACM ID: 1808374.

[83] Milo M. K Martin, Daniel J Sorin, Bradford M Beckmann, Michael R Marty, Min Xu,

Alaa R Alameldeen, Kevin E Moore, Mark D Hill, and David A Wood. Multifacet’s

general execution-driven multiprocessor simulator (GEMS) toolset. ACM SIGARCH

Computer Architecture News, 33:9299, November 2005. ACM ID: 1105747.

[84] Austen McDonald, Brian D. Carlstrom, JaeWoong Chung, Chi Cao Minh, Has-

san Chafi, Christos Kozyrakis, and Kunle Olukotun. Transactional memory: The

hardware-software interface. IEEE Micro, 27(1):6776, 2007.

[85] Oskar Mencer, Zhining Huang, and Lorenz Huelsbergen. HAGAR: efficient multi-

context graph processors. In Proceedings of the Reconfigurable Computing Is Going

99

Mainstream, 12th International Conference on Field-Programmable Logic and Appli-

cations, FPL ’02, page 915924, London, UK, UK, 2002. Springer-Verlag. ACM ID:

740064.

[86] M.V. Milkes. The genesis of microprogramming. IEEE Annals of the History of

Computing, 8(2):116–126, 1986.

[87] S.-W. Moon, K.G. Shin, and J. Rexford. Scalable hardware priority queue archi-

tectures for high-speed packet switches. In Real-Time Technology and Applications

Symposium, 1997. Proceedings., Third IEEE, pages 203–212, 1997.

[88] K.E. Moore, J. Bobba, M.J. Moravan, M.D. Hill, and D.A. Wood. LogTM: log-

based transactional memory. In The Twelfth International Symposium on High-

Performance Computer Architecture, 2006, pages 254 – 265, February 2006.

[89] A. Morton, J. Liu, and Insop Song. Efficient priority-queue data structure for hard-

ware implementation. In International Conference on Field Programmable Logic and

Applications, 2007. FPL 2007, pages 476 –479, August 2007.

[90] G. J. Myers and B. R. S. Buckingham. A hardware implementation of capability-

based addressing. SIGOPS Oper. Syst. Rev., 14(4):13–25, 1980.

[91] OAR Corporation. RTEMS: real-time executive for multiprocessor systems.

http://www.rtems.com/, 2012.

[92] Oracle. MySQL :: The world’s most popular open source database.

http://www.mysql.com/, 2012.

[93] Elliot I. Organick. A programmer’s view of the Intel 432 system. McGraw-Hill, Inc.,

New York, NY, USA, 1983.

100

[94] M. Oskin, F.T. Chong, and T. Sherwood. ActiveOS: virtualizing intelligent memory.

In (ICCD ’99) International Conference on Computer Design, 1999, pages 202 –208,

1999.

[95] Mark Oskin, Frederic T Chong, and Timothy Sherwood. Active pages: a computation

model for intelligent memory. In ACM SIGARCH Computer Architecture News, ISCA

’98, page 192203, Washington, DC, USA, 1998. IEEE Computer Society. ACM ID:

279387.

[96] E. A. Ozkarahan, S. A. Schuster, and K. C. Smith. RAP: an associative processor for

data base management. In Proceedings of the May 19-22, 1975, national computer

conference and exposition, AFIPS ’75, page 379387, New York, NY, USA, 1975.

ACM.

[97] K. Pagiamtzis and A. Sheikholeslami. Content-addressable memory (CAM) circuits

and architectures: a tutorial and survey. Solid-State Circuits, IEEE Journal of,

41(3):712–727, 2006.

[98] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Kee-

ton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A case for intel-

ligent RAM. IEEE Micro, 17(2):34–44, 1997.

[99] David A Patterson. Latency lags bandwith. Commun. ACM, 47(10):7175, October

2004. ACM ID: 1022596.

[100] Ben Pfaff. Performance analysis of BSTs in system software. SIGMETRICS Perform.

Eval. Rev., 32(1):410411, June 2004. ACM ID: 1005742.

[101] Isabelle Puaut and Christophe Pais. Scratchpad memories vs locked caches in hard

real-time systems: a quantitative comparison. In Proceedings of the conference on

101

Design, automation and test in Europe, DATE ’07, page 14841489, San Jose, CA,

USA, 2007. EDA Consortium.

[102] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun.

ACM, 33(6):668676, June 1990.

[103] ReactOS Foundation. ReactOS. http://www.reactos.org/en/index.html, 2012.

[104] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. Active storage for large-scale

data mining and multimedia. In Proceedings of the 24rd International Conference

on Very Large Data Bases, VLDB ’98, page 6273, San Francisco, CA, USA, 1998.

Morgan Kaufmann Publishers Inc.

[105] Robert Rönngren and Rassul Ayani. A comparative study of parallel and sequential

priority queue algorithms. ACM Trans. Model. Comput. Simul., 7(2):157209, April

1997.

[106] Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E. Ramadan,

Bhandari Aditya, and Emmett Witchel. TxLinux: using and managing hard-

ware transactional memory in an operating system. In Proceedings of twenty-first

ACM SIGOPS symposium on Operating systems principles, pages 87–102, Steven-

son, Washington, USA, 2007. ACM.

[107] Amir Roth and Gurindar S. Sohi. Effective jump-pointer prefetching for linked data

structures. In Proceedings of the 26th annual international symposium on Computer

architecture, ISCA ’99, page 111121, Washington, DC, USA, 1999. IEEE Computer

Society.

102

[108] S. Saez, J. Vila, A. Crespo, and A. Garcia. A hardware scheduler for complex real-

time systems. In Industrial Electronics, 1999. ISIE ’99. Proceedings of the IEEE

International Symposium on, volume 1, pages 43–48 vol.1, 1999.

[109] Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis. Flexible architectural

support for fine-grain scheduling. In Proceedings of the fifteenth edition of ASPLOS

on Architectural support for programming languages and operating systems, pages

311–322, Pittsburgh, Pennsylvania, USA, 2010. ACM.

[110] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim,

Jaehyuk Huh, Doug Burger, Stephen W Keckler, and Charles R Moore. Exploiting

ILP, TLP, and DLP with the polymorphous TRIPS architecture. In ACM SIGARCH

Computer Architecture News, volume 31, page 422433, New York, NY, USA, May

2003. ACM. ACM ID: 859667.

[111] David Elliot Shaw. A relational database machine architecture. In Proceedings of the

fifth workshop on Computer architecture for non-numeric processing, CAW ’80, page

8495, New York, NY, USA, 1980. ACM.

[112] Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. Database-aware semantically-smart storage. In Proceed-

ings of the 4th conference on USENIX Conference on File and Storage Technologies

- Volume 4, FAST’05, page 1818, Berkeley, CA, USA, 2005. USENIX Association.

[113] M. Sjalander, A. Terechko, and M. Duranton. A look-ahead task management unit for

embedded multi-core architectures. In Digital System Design Architectures, Methods

and Tools, 2008. DSD ’08. 11th EUROMICRO Conference on, pages 149–157, 2008.

103

[114] D.L. Slotnick. Logic per track devices. In Franz L. Alt and Morris Rubinoff, editors,

Advances in Computers, volume Volume 10, pages 291–296. Elsevier, 1970.

[115] Insop Song. HyOS: a hybrid operating system design approach for real-time sys-

tems using hardware acceleration. Chapel Hill, North Carolina, 2012. Open Source

Automation Development Lab.

[116] Standard Performance Evaluation Corporation. SPEC CPU2006.

http://www.spec.org/cpu2006/, 2012.

[117] Song Sun and Joseph Zambreno. Design and analysis of a reconfigurable platform for

frequent pattern mining. IEEE Transactions on Parallel and Distributed Systems,

22(9):1497–1505, September 2011.

[118] Lin Tan and Timothy Sherwood. A high throughput string matching architecture

for intrusion detection and prevention. In ACM SIGARCH Computer Architecture

News, volume 33, page 112122, New York, NY, USA, May 2005. ACM. ACM ID:

1069981.

[119] Justin Teller, Charles B. Silio Jr, and Bruce Jacob. Performance characteristics

of MAUI: an intelligent memory system architecture. In Proceedings of the 2005

workshop on Memory system performance, MSP ’05, page 4453, New York, NY,

USA, 2005. ACM.

[120] The Battle for Wesnoth. Battle for wesnoth. http://www.wesnoth.org/, 2012.

[121] The Chromium Project. Chromium. http://www.chromium.org/Home, 2012.

[122] The Document Foundation. Home LibreOffice. http://www.libreoffice.org/, 2012.

104

[123] Mikkel Thorup. Equivalence between priority queues and sorting. J. ACM, 54(6),

December 2007. ACM ID: 1314692.

[124] Haris Volos, Andres Jaan Tack, Neelam Goyal, Michael M. Swift, and Adam Welc.

xCalls: safe I/O in memory transactions. In Proceedings of the 4th ACM European

conference on Computer systems, EuroSys ’09, page 247260, New York, NY, USA,

2009. ACM.

[125] Qing Wan, Hui Wu, and Jingling Xue. WCET-aware data selection and allocation

for scratchpad memory. In Proceedings of the 13th ACM SIGPLAN/SIGBED In-

ternational Conference on Languages, Compilers, Tools and Theory for Embedded

Systems, LCTES ’12, page 4150, New York, NY, USA, 2012. ACM.

[126] Zhenlin Wang, Doug Burger, Kathryn S. McKinley, Steven K. Reinhardt, and

Charles C. Weems. Guided region prefetching: a cooperative hardware/software

approach. SIGARCH Comput. Archit. News, 31(2):388398, May 2003.

[127] Yasuko Watanabe, John D Davis, and David A Wood. WiDGET: wisconsin de-

coupled grid execution tiles. In ACM SIGARCH Computer Architecture News, vol-

ume 38, page 213, New York, NY, USA, June 2010. ACM. ACM ID: 1815965.

[128] J. Whitham and N. Audsley. Investigating average versus worst-case timing behavior

of data caches and data scratchpads. In Real-Time Systems (ECRTS), 2010 22nd

Euromicro Conference on, pages 165 –174, July 2010.

[129] J. Whitham and N. Audsley. Studying the applicability of the scratchpad memory

management unit. In Real-Time and Embedded Technology and Applications Sympo-

sium (RTAS), 2010 16th IEEE, pages 205 –214, April 2010.

105

[130] Maurice V Wilkes. The memory gap and the future of high performance memories.

SIGARCH Comput. Archit. News, 29(1):27, March 2001. ACM ID: 373576.

[131] Hugh E Williams, Justin Zobel, and Steffen Heinz. Self-adjusting trees in practice

for large text collections. Software: Practice and Experience, 31(10):925–939, August

2001.

[132] Willow Garage. OpenCV. http://opencv.willowgarage.com/wiki/, 2012.

[133] Hui Wu, Jingling Xue, and Sri Parameswaran. Optimal WCET-aware code selection

for scratchpad memory. In Proceedings of the tenth ACM international conference

on Embedded software, EMSOFT ’10, page 5968, New York, NY, USA, 2010. ACM.

[134] L. Wu, M. Kim, and S. Edwards. Cache impacts of datatype acceleration. IEEE

Computer Architecture Letters, 11(1):21–24, January 2012.

[135] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. HY-

DRA: the kernel of a multiprocessor operating system. Commun. ACM, 17(6):337–

345, 1974.

[136] Wm. A Wulf and Sally A McKee. Hitting the memory wall: implications of the

obvious. ACM SIGARCH Computer Architecture News, 23:2024, March 1995. ACM

ID: 216588.

[137] Chia-Lin Yang and Alvin R. Lebeck. A programmable memory hierarchy for prefetch-

ing linked data structures. In Proceedings of the 4th International Symposium on

High Performance Computing, ISHPC ’02, page 160174, London, UK, UK, 2002.

Springer-Verlag.

106

[138] Chia-Lin Yang, Alvin R. Lebeck, Hung-Wei Tseng, and Chien-Hao Lee. Tolerating

memory latency through push prefetching for pointer-intensive applications. ACM

Trans. Archit. Code Optim., 1(4):445475, December 2004.

[139] Yi-Hua Edward Yang and Viktor K. Prasanna. Memory-efficient pipelined archi-

tecture for large-scale string matching. In Field-Programmable Custom Computing

Machines, Annual IEEE Symposium on, pages 104–111, Los Alamitos, CA, USA,

2009. IEEE Computer Society.

[140] Junhee Yoo, Sungjoo Yoo, and Kiyoung Choi. Multiprocessor system-on-chip designs

with active memory processors for higher memory efficiency. In Design Automation

Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 806–811, 2009.

107

Appendix A – STL Profiling: Containers and Comparators

This appendix describes profiling the STL to determine how applications use containers

and object comparisons.

A.1 Maps in the C++ STL

Linear and tree-based structures, which underlie STL containers, are commonly used by

programmers. Commonly used containers are the vector, list, set, and map; these con-

tainers are included by at least half of 21 open-source C++ programs covering a range of

application domains including navigation, simulation, computer vision, video games, doc-

ument processing, databases, operating systems, and web browsers. Table A-1 shows how

many of the following programs include which STL header files: dimacs-sq, Dijkstra’s algo-

rithm with SmartQ [26]; Opal [83] and GEM5 [15, 5], processor simulators; Geant4 [9, 4],

physics particle simulator; FlightGear [3], flight simulator; Wesnoth [120], video game;

OpenCV [132], computer vision library; Boost [2], library for C++; MySQL [92], database

server; LibreOffice [122], office productivity suite; Doxygen, documentation generation;

Haiku [53], OS based on BeOS; ReactOS [103], OS based on Windows NT; Chromium [121],

web browser; povray, soplex, dealII, namd, xalancbmk, astar, and omnetpp, C++ bench-

marks from SPEC CPU 2006 [116].

Digging deeper, I investigated the runtime behavior of two programs—Geant4 and

Chromium—that rely heavily on the STL containers. I modified the profile mode of the

Table A-1: STL container use of 21 open-source C++ programs.

vector list set multiset map bitset unordered set unordered map
13 13 13 1 14 6 4 5

108

Table A-2: STL map use profiling. Map count is the number of maps created by the appli-
cation. Find time is the percent of application execution spent executing find operations.
Max find is the size and find time for the map with the most time spent executing find.

Application
Map Map size

Find time
Max find

count Mean Max Map size % Time

Chromium 1907 5.33 1228 12.39% 254 3.55%
Geant4: DNAPhysics 126 3074.59 88680 23.43% 38 11.38%
gammaray telescope 750 73.87 466 8.78% 466 0.24%

hadrontherapy 752 74.30 467 5.07% 467 0.15%
human phantom 72 3459.30 21683 5.08% 408 4.41%

microbeam 540 529.89 21683 3.37% 240 0.74%
brachytherapy 67 3744.83 21683 3.09% 576 2.43%
radioprotection 771 239.08 53256 2.69% 488 0.06%
lAr calorimeter 751 74.83 467 1.90% 467 0.07%
medical linac 55 4544.80 21683 1.02% 224 0.71%

underground physics 58 4297.58 21683 0.90% 312 0.80%

GNU C++ Library [50], which is based on the Perflint [80] project. I added detailed

statistics for the map and vector containers including the minimum, maximum, and to-

tal number of elements, and the time of insert, erase, and find operations. Geant4 and

Chromium are built and executed with and without profile mode support. For Geant4, the

advanced examples provided with the release are used as a workload. For Chromium, the

workload was just to start the browser—which loads a blank page by default—and then

close the browser interactively; this workload is subject to timing variations and is only

useful for descriptive empirical evidence.

The profiled version of each application is executed to obtain measurements for the

STL container operations, and the unprofiled version is executed to obtain a measure for

the overall workload execution time without the overhead of profiling. Table A-2 shows

the results of these runs with the Chromium and Geant4 workloads.

Chromium spends about 12% of its time executing find for the simple task of starting up

and shutting down, and the Geant4 DNAPhysics example spends over 23% of its execution

109

time on find and around 11% of its execution time searching through a map with only

38 elements. Such a map is an ideal candidate for hardware acceleration: small and

frequently accessed. Even in Chromium, a map of only 254 elements consumes roughly

3.5% of execution time.

A.2 Object comparison code

Using HWDSs with objects is challenging for the STL set and map, because programmers

can write custom key and value comparison code, which can be hard to support with paral-

lel hardware comparators; performance benefits of HWDSs comes especially from parallel

comparisons. Efficient comparison hardware exists for primitive data types including inte-

gers, floats, and strings. If object-oriented programs use other data types, or complicated

combinations of these primitives, then HWDSs would have difficulty providing any benefits.

This section describes a cursory investigation into whether C++ programs use complicated

comparisons or simple, supported primitives.

To get a sense of whether C++ programs use complex comparisons with containers,

I extended the profile mode (used in Section A.1) with support for printing the call site

of container instantiation. The call site gives the code location where an object instance

is made, and whether it uses a primitive comparison (i.e. int, float, or string), or if the

structure has some alternate comparison method. Using this profiling information, the

behavior of the heaviest usage of the STL map container in the two profiled applications—

Chromium and Geant4—can be found. The most heavily used maps in both applications

are maps that make straightforward comparisons with primitives (integer and double). The

other maps tend to use integer, floating point, or string comparisons.

The map that consumes the most time for the Chromium workload is the observers

map declared in the NotificationServiceImpl class and used for event notification, in

110

particular for tracking observers of notifications. This map has integer keys with another

map (the event sources and observers) as its values; Figure A-1 shows the definition of the

map. The use of integer keys makes it viable for a map HWDS, as does its small maximum

size of 254 elements. The map that consumes the most time in the DNAPhysics example

of Geant4 uses double keys (and has another map has its value). By observation, the map

keys that are used in the Geant4 code base are integers, doubles, and strings; other maps

have key types that are obscured by classes and type definitions.

Figure A-1: The observers map consumes 3.5% of the Chromium workload’s execution
time and uses a primitive type (integers) for its key.

A.3 Summary

This appendix shows that real-world applications use STL maps in ways that are amenable

to HWDS support.

111

	Dedication
	Acknowledgments
	Abstract of Dissertation
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Glossary of Terms
	Introduction
	Impact
	Overview
	Overflow handling
	Sharing HWDS resources: HWDS assignment

	Contributions
	Scope
	Outline

	Literature Review
	Design and Implementation of hwds
	hwds for network routing
	hwds for real-time scheduling
	hwds for reconfigurable computing with Java
	Systolic Priority Queues
	Abstract Datatype Processors
	Content-addressable memory (CAM)
	Scratchpad memory (SPM)
	Reconfigurable computing data structures
	String matching

	Fine-grained Parallelism
	Carbon
	Ne-XVP
	Asynchronous Direct Messages
	HAQu
	Loop accelerators
	Scalable Cores

	Shipping Code to Data
	Data structure co-processing
	Processor-in-memory
	Processor-in-disk

	Linked Prefetching
	Capability- and Object-based Systems
	Transactional Memory
	Summary of Related Work

	OS Support for HWDSs: Generalities
	Overflow Handling
	HWDS Assignment
	Experimental Infrastructure

	Priority Queue HWDS
	Priority Queue: an Example hwds
	Software priority queues
	Hardware priority queues

	Handling Overflow with a Priority Queue HWDS
	Experiments
	Discrete event simulation
	Planning algorithms

	Summary

	Map HWDS
	Software-based Search
	Map hwds
	CAM-based map HWDS
	Overflow handling
	Least recently used (LRU) spilling and fill-after-search
	Size checks
	Dynamic eviction

	Experiments
	Overflow handling for large maps
	LRU spilling and fill-after-search
	Eviction
	Sharing for multiple maps

	Summary

	Shared HWDSs for Hard Real-Time Systems
	Real-time Considerations for HWDSs
	Overflow handling
	Sharing

	Response Time Analysis
	Notation
	Standard response time analysis
	Response time analysis with HWDSs
	Response time analysis with a priority queue HWDS

	HWDS Assignment for Real-time Systems
	Experiments
	Schedulability
	Real-world Applications

	Summary

	Future Work and Conclusion
	Policies for Accessing Memory
	HWDS Assignment
	Data Sharing
	OS Optimizations for HWDSs
	Integration with Programming Languages and Libraries
	Hardware Improvements
	Other HWDSs
	Improved processor pipeline support
	HWDS support for instructions
	Prefetching
	Multicore considerations

	Conclusion

	Bibliography
	STL Profiling: Containers and Comparators
	Maps in the C++ STL
	Object comparison code
	Summary

